# REVIEW

# **Open Access**

# Recent advances and future directions in banana molecular biology and breeding



Chunzhen Cheng<sup>1,2†</sup>, Shuofan Wu<sup>1,3†</sup>, Guiming Deng<sup>1,3</sup>, Ou Sheng<sup>1,3</sup>, Ganjun Yi<sup>1,3\*</sup> and Qiaosong Yang<sup>1,3\*</sup>

# Abstract

Since publication of a draft genome of the doubled-haploid 'Pahang' banana (*Musa acuminata*, DH-Pahang), a new era for banana biology research has begun. With the release of genomic data from some important *Musa* species and subspecies and the continuous development of molecular biology techniques, significant progress has been made. Here, we summarize the achievements and advances in the banana molecular biology and breeding over the past decade covering origin and domestication, fruit biology, stress biology, and breeding aspects, and highlight their challenges and future perspectives. This review is intended to provide researchers with the latest information on the complex genetic background and evolutionary relationship of bananas, the biology of fruit ripening, and multi-omics-based stress biology research. We especially focus on recent advances in the molecular breeding of bananas, offering an informative research direction and providing valuable technical references for future research in the field.

Keywords Banana (Musa spp.), Molecular biology, Fruit ripening biology, Stress resistance, Breeding

## Introduction

Bananas (*Musa* spp.), including plantain, are one of the world's essential fruits and food crops. They are cultivated in tropical and subtropical regions more than 130 countries. Based on FAOSTAT's recent data, banana annual production is about 179.26 million tons, which occupies over 12.67 million hectares of land globally (FAOSTAT

<sup>†</sup>Chunzhen Cheng and Shuofan Wu contributed equally to this work and should be considered co-first authors.

\*Correspondence: Ganjun Yi yiganjun@vip.163.com Qiaosong Yang soyang@hotmail.com

<sup>1</sup> Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangdong 510640, China

 $^{\rm 2}$  College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China

<sup>3</sup> Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510640, China 2022). Given the sterile and polyploidy characteristics of most cultivated bananas and their unjustified ancestors, their origin and domestication receives extensive attentions (Heslop-Harrison and Schwarzacher 2007). Fortunately, the interpretation and publication of the genomes of some *Musa* species and subspecies has significantly clarified and leveraged their enhanced breeding (Huang, et al. 2023; Li, et al. 2024; Xie, et al. 2024).

In recent years, there have been growing challenges of banana production in the international banana industry. These include a short shelf-life, sensitivity to several common abiotic stresses (low temperature, drought, salinity and others) and susceptibility to biotic stresses (Fusarium wilt, bacterial wilt, viruses, nematodes, etc.). Breeding new varieties is one of the most effective ways to address these problems. However, given the limited success of cross breeding, lack of genomic resources for banana cultivars, and insufficient molecular markers, the field in banana breeding has progressed slowly, remaining with large knowledge gaps. Therefore, it is important to understand the complex genetic background and evolutionary relationship of bananas and characterize the



© The Author(s) 2024. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/lublicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

high-yield, high-quality, and resistance genes at multiple levels.

Publication of the draft genome of the doubled-haploid 'Pahang' banana (M. acuminata, DH-Pahang) in 2012 (D'Hont, et al. 2012), has opened a new, fast-developing era for banana research. Significant efforts were made to not only sequence genomes of Musa species and subspecies but also combine multi-omics technologies (including transcriptomics, proteomics, metabolomics, epigenomics, etc.), which have provided a comprehensive understanding of the genetic and molecular mechanisms underlying banana biology, paving the way for innovative approaches in banana breeding, disease resistance, and crop improvement. Here, we review the advances in banana molecular biology over the past decade, covering from its origin and domestication to improvement of its fruits and resistance, and breeding alternatives. Additionally, we highlight the challenges and future perspectives of banana research.

# **Origin and domestication of bananas**

Bananas are large perennial herbs mainly distributed in tropical and subtropical regions of Asia and Oceania, with outliers in Nepal and south part of China to the north, Queensland to the south, Pemba Island to the west, and Samoa to the east (De Langhe, et al. 2009; Xiao, et al. 2024). The northern and southern outliers are considered natural, but the outliers in the west and east are anthropogenic (De Langhe, et al. 2009). Bananas are generally thought to be originated in Southeast Asia and the west Oceania (Wang, et al. 2019b), with New Guinea considered as one of the earliest origin centers of wild bananas (Denham, et al. 2003).

*Musa* is divided into two clades: one is comprised of the sections *Ingentimusa*, *Callimusa*, and *Australimusa* (2n = 14, 18, or 20); the other is of the sections *Eumusa* and *Rhodochlamys* (2n = 22) (Häkkinen 2013). According to their genomic compositions, bananas are predominantly categorized into AA, AB, AAA, AAB and ABB genotypes, as well as some BBB, TT, AT, AAAB, AABB, ABBB (Wang, et al. 2019b; Zhou, et al. 2024) and limited AS, AAT and BBT genotypes (Rekha 2016). Accumulated evidence has verified that the majority of the cultivated, seedless triploid bananas have evolved from two wild species, *M. acuminata* (A genome, 2n = 22) and *M. balbisiana* (B genome, 2n = 22), through natural inter/intra-specific hybridization and somaclonal variations (Fig. 1A) (Simmonds and Shepherd 1955; Rekha 2016). Further, it appears that *M. schizocarpa* (S genome, 2n = 22) and some species from the *Australimusa* section (T genome, 2n = 20) have also contributed to the genetic composition of modern banana cultivars (Fig. 1B) (Huang, et al. 2023; Martin, et al. 2023).

Due to its separated spatiotemporal domestication (De Langhe, et al. 2009), polyploidy and mostly vegetative propagation characteristics, plus the intentional and unintentional impact of human, the domestication of bananas is extremely complicated. However, given the diverse ancestral contributions and some missing ancestors, similar botanical traits of some cultivated bananas, lack of some important genetic resources, and limited number of markers (Martin, et al. 2020), the distinguishing of many cultivated bananas is often very difficult. Over the past decade, genomics and some other omics techniques have been successfully applied in exploring the genetic diversities of both wild and cultivated bananas and some other Musa species, which have greatly facilitated the clarification of the domestication of cultivated bananas (Martin, et al. 2020; Huang, et al. 2023; Li, et al. 2024). A few Musa genomes, including the improved genome of DH-Pahang, those of some wild banana resources and their wild relatives have been assembled and released. These include M. balbisiana (Wang, et al. 2019b), M. itinerans (Wu, et al. 2016), M. schizocarpa, M. beccarii (Wang, et al. 2023), M. textilis (Zhou, et al. 2024), M.troglodytarum (Zhou, et al. 2024), M. ornata and M. velutina (Xiao, et al. 2024), providing the most abundant genomic datasets and molecular markers for clarifying the domestication of cultivated bananas.

*M. acuminata* is the most important genetic resources for cultivated bananas, contributing to the fruit quality and parthenocarpy of the modern species (Heslop-Harrison and Schwarzacher 2007). It can be divided into multiple subspecies, among which at least five have been identified as contributors to cultivated banana varieties, namely *banksii, zebrina, malaccensis, burmannica* and *errans* (Perrier, et al. 2011). Through multivariate analysis and SNP clustering, five possible ancestral contributors to cultivated AAA bananas were identified (Fig. 1B) (Martin, et al. 2020; 2023). Phylogenomic analyses of

(See figure on next page.)

Fig. 1 Diagram of the evolution of modern cultivated banana (A) and genome ancestry of modern triploid banana cultivars (B). banksii: *M. acuminata* ssp. *banksii*; burmannica: *M. acuminata* ssp. *burmannica*; malaccensis: *M. acuminata* ssp. *malaccensis*, zebrina: *M. acuminata* ssp. *zebrina*, balbisiana: *M. balbisiana*; schizocarpa: *M. schizocarpa*; sumatrana: *M. acuminata* ssp. *sumatrana*; Cavendish accession name: Grande Naine; EAHB (east African highland banana) accession name: Intokatoke; Plantain accession name: Mkono Wa Tembo; Pisang Awak accession name: Namwa Khom



Fig. 1 (See legend on previous page.)

'Banksii' (M. acuminata ssp. banksii), 'Maia Oa' (M. acuminata ssp. zebrina), and 'Calcutta 4' (M. acuminata ssp. burmannica) suggest that rapid radiation within M. acuminata subspecies occurred after its divergence with M. balbisiana. Introgression between M. acuminata ssp. malaccensis and M. acuminata ssp. burmannica was detected across the genomes (Rouard, et al. 2018). Most dessert bananas belong to the 'Cavendish' and 'Gros Michel' subgroups. Recently, their chromosome-scale genome assemblies revealed that the three A subgenomes are with M. acuminata ssp. banksii (endemic to New Guinea), malaccensis (originated from the Malay Peninsula) and zebrina (found in Java island in Indonesia) as major ancestral contributor (Li, et al. 2024), respectively. This finding supports the geographical distribution of wild M. acuminata bananas.

# Advances in banana fruit ripening biology Regulation of banana fruit ripening

As a typical climacteric fruit, phytohormones (especially ethylene) and metabolites (such as sucrose, starch, carotenoids, and flavor-related substances) change greatly during fruit ripening (Ning, et al. 2021). Many environmental and transcription factors affecting this process also have been widely investigated and have laid an important foundation for the control of ripening among climacteric fruits (Fig. 2A).

Ethylene is crucial in regulating the ripening of banana fruits (Shan, et al. 2020b). Therefore, the inhibitor of ethylene receptor, 1-methylcyclopropene (1-MCP), is widely used to extend the shelf-life of bananas by suppressing ethylene production (Zhu, et al. 2020b). During fruit ripening, transcriptional levels of ethylene biosynthesis genes, such as 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), were upregulated (Wu, et al. 2024a). The expression level of ACO in fast ripening banana cultivars was much higher, while the up-regulation of ACS1 and ACO1 genes during fruit ripening was delayed in slow-ripening cultivars (Netlak, et al. 2021). It was reported that the B genome composition of banana cultivars contributed positively to accelerating fruit ripening (Netlak, et al. 2021). Consistently, comparative analyses of A and B subgenomes also revealed that the amount of ACO genes in the B subgenome was larger than that in the A subgenome, and in much higher expression levels (Wang, et al. 2019b). This can explain why banana cultivars with B subgenome composition like 'Fenjiao' are fast-ripening. In addition to ethylene, ABA accumulation was also closely associated with the fast ripening of 'Fenjiao' (Hu, et al. 2017). Moreover, brassinosteroid (BR) was discovered playing a role in controlling banana

fruit ripening by modulating ethylene biosynthesis (Shan, et al. 2020a).

Besides ethylene biosynthesis genes, many other ripening-related genes, such as cell wall modificationrelated polygalacturonase (PG), pectin esterase (PE), pectate lyase (PL),  $\beta$ -D-xylosidase (XYL) and expansin (EXP), starch-degradation-related glucan, water dikinase (GWD), starch-related phosphatase Like-Sex-Four (LSF),  $\beta$ -Amylase (BAM),  $\alpha$ -Amylase (AMY), and sucrose biosynthesis-related sucrose-phosphate synthase (SPS), have been identified. Their upstream transcriptional regulatory pathways are mediated by different transcription factors (TFs). Two types of regulatory circuits in fruit ripening, the NAC-type circuit and the MADS-box loop, have been identified in bananas (Lü, et al. 2018). In the NAC-type circuit, NAC activates downstream ethylene biosynthesis genes (including ACS and ACO) and other ripening-related genes like PG and *EXP.* In the other loop, NAC and MADS-box regulate downstream ethylene-independent ripening genes. In the study conducted by Kuang et al. (2021), 25 TFs were identified as prime candidates regulating fruit ripening. MaNAC029 modulates ethylene biosynthesis and fruit quality, and undergoes MaXB3-mediated proteasomal degradation during fruit ripening (Wei, et al. 2023b). MaNAC154 can target the promoters of MaEXP1/2, MaPL2, MaPG1/X3 and MaXTH5/23/28 and repress their transcription (Chen, et al. 2023c). MaMADS36 directly binds to the promoter of MaBAM9b, increases its transcription and starch degradation (Liu, et al. 2021). MaMYB4 was identified as a negative regulator of banana fruit ripening. It suppresses the expression of ethylene biosynthetic and cell wall modifying genes (Yang, et al. 2022). MaWRKY49 positively functions in ethylene-induced fruit ripening by activating the expression of fruit softening-related genes, such as PLs (Liu, et al. 2023). BEL1-LIKE HOMEODOMAIN transcription factor 1 (BEL1) interacts directly with the promoters of several cell wall and starch degradation-related genes, such as MaAMY3, MaXYL32, and MaEXP-A8, and plays a positive role in regulating fruit ripening (Song, et al. 2023). Brassinazole resistant1/2 (MaBZR1/2), the central TF of BR signaling, can directly bind to and repress the promoters of several cell wall modifying genes like MaEXP2, MaPL2 and MaXET5, whose transcription levels are elevated concomitant with fruit ripening (Shan, et al. 2020a). MaIAA17-like, an auxin/indole-3-acetic acid (Aux/IAA) family member, can bind to and regulate the activities of promoters of chlorophyll, starch and cell wall degradation-related genes, as well as interact with ethylene-insensitive 3-binding F-box protein (MaEBF1), further activating the expression of MaNOL, MaBAM8, MaPL8, and MaSUR14 (Chen, et al. 2023b). MabHLH6



**Fig. 2** Summary of recent advances in banana fruit biology. **A** Identified genes and other factors influencing fruit ripening; (**B**-**D**): Reported genes and methods used to address industrial issues in banana production. *ACO*, *1-aminocyclopropane-1-carboxylic acid oxidase*; *ACS*, *1-amino cyclopropane-1-carboxylic acid synthase*; *SAM*, *S-Adenosyl-L-methionine synthetase*; *PG*, *polygalacturonase*; *PE*, *pectinesterase*; *XYL*, *β-D-xylosidase*; *EXP*, *expansin*; *XTH*, *xyloglucan endotransglucosylase/hydrolase*; *BAM*, *β-Amylase*; *AMY*, *α-Amylase*; *GWD*, *glucan*, *water dikinase*; *LSF*, *starch-related phosphatase Like-Sex-Four*; *SGR*, *stay-green*; *PPH*, *pheophytinase*; *AAT*, *alcohol acyltransferase*; *INV*, *invertase*; *SPS*, *sucrose-phosphate synthase*; 1-MCP, 1-methylcyclopropene; CTS-MMT, chitosan-montmorillonite; *EBF1*, *ethylene F-box* 1; *ABI*, *abscisic acid-insensitive-like*; VLCFAs, very-long-chain fatty acids; *PPO*, *polyphenol oxidase*; CI, chilling injury; OFIM, *Opuntia ficus indica* mucilage; BAH1, benzoic acid hypersensitive 1; NYC1, nonyellow coloring 1; NIP1, NYC1-interacting protein 1; RZF1, ring zinc finger 1; *CBR*, *Chlorophyll b reductase*; *CBF1*, *dehydration-responsive-element-binding (DREB) protein / C-repeat binding factor* 1

acts as a positive regulator of fruit ripening by activating the promoters of 11 starch degradation-related genes by recognizing the E-box (CANNTG) motifs present in their promoters (Xiao, et al. 2018). C2H2 zinc finger proteins were involved in fruit ripening through transcriptional control of ethylene biosynthetic genes (Han, et al. 2016). Moreover, several bZIP TFs, such as MabZIP93 (Wu, et al. 2019) and MabZIP21 (Wu, et al. 2022), have also been reported to function in regulating ripening. Additionally, multilayered transcriptional regulatory cascades controlling ethylene biosynthesis have been discovered and received excessive attention. These include the MaMADS1–MaNAC083–MaACS1/MaACOs regulatory cascade (Wei, et al. 2023d), MaXB3-MaNAC (Wei, et al. 2023a) and others.

Recently, protein phosphorylation and MAPK-related genes were frequently discovered functioning in regulation of fruit ripening. For example, MaMPK2 interacts with and phosphorylates MabZIP93, promoting MabZIP93-mediated transcriptional activation of cell wall modifying genes (Wu, et al. 2019). MaMPK14 mediates postharvest ripening by cooperating with MaMYB4 (Yang, et al. 2022). MaMPK6-3 can phosphorylate MabZIP2 and enhance MabZIP21-mediated transcriptional activation, and MabZIP21 can enhance its role in transcriptional regulation by activating the transcription of both *MaMPK6-3* and itself (Wu, et al. 2022). MaKIN10 X1/3 can interact with MaMYB13 and enhance the MaMYB13-mediated transcriptional activation via phosphorylation during fruit ripening under low-temperature condition (Li, et al. 2023a). In addition to phosphorylation, acetylation, histone methylation and sulfoxidation also play important roles in the regulation of fruit ripening. Histone deacetylase MaHDA1 can be recruited by MaERF11 and participate in repressing MaACO1 and expansins during ripening (Han, et al. 2016). MaHDA6 interacts with MaNAC154 and enhances the MaNAC154-mediated transcriptional repression capacity (Chen, et al. 2023c). Moreover, the acetylation levels of histones H3 and H4 of cell wall modification-related genes, including MaEXP1/2, MaPL2, MaPG1/X3 and MaXTH5/23/28, are elevated during ripening (Chen, et al. 2023c). The transient overexpression of MaJMJ15, a gene encoding H3K27me3 site-specific demethylase, can promote banana fruit ripening by directly targeting several key ripening-related genes (MaNAC1/2, MaACS1, MaACO1 and MaEXP2) and by decreasing global H3K27me3 (Zeng, et al. 2023). The methionine sulfoxide reductase MaMsrB2 can target, and partially repair oxidized MaNAC42, and restore its DNA-binding capacity. This reductase acts as a transcriptional activator of fruit ripening under oxidative stress by directly binding to the promoters of ripening-related genes (Yan, et al. 2021).

## Banana fruit quality

The banana industry faces several key challenges affecting fruit quality, including rapid maturation (Fig. 2B), fruit ripening/softening disorders caused by low temperature storage or transportation (Fig. 2C), and green peel ripening caused by high temperature (Fig. 2D). These challenges have attracted broad attention and been widely studied.

Previous evidence has revealed that fast-ripening banana cultivars are linked to higher expression of ethylene biosynthetic and starch metabolism genes (Wang, et al. 2019b; Netlak, et al. 2021). Techniques like CRISPR/ Cas9 have been used to disrupt these genes, significantly extending shelf-life. For instance, our group created MaACO1-disrupted Cavendish bananas by using the CRISPR/Cas9 system, the shelf-life of transgenic fruits is approximately 4 times longer than that of WT fruits (80 d vs 21 d) under natural ripening conditions, suggesting MaACO1 is an ideal target for creating new banana germplasms with a long shelf-life of fruit by gene editing (Hu, et al. 2021a). The transient silencing of MaC2H2-IDD, a transcriptional activator of cell wall and starch degradation genes, results in repressed ripening of 'Fenjiao' banana (Song, et al. 2024). Additionally, treatments with a 2% chitosan-montmorillonite (CTS-MMT) coating (Wantat, et al. 2022) and hydrogen water (HW) (Yun, et al. 2022) have reportedly helped maintain the postharvest quality of banana fruits.

Banana fruits are sensitive to chilling injury (CI) when stored at low temperature and/or during cold chain transportation. These conditions can cause abnormal fruit softening and browning spots on banana peels. They may result from physiological dysfunction caused by membrane lipid phase changes, oxidative damage of biomacromolecules, a respiratory metabolism abnormality, etc. (Ramírez-Sánchez, et al. 2022; Li, et al. 2023; Qin, et al. 2023; Zhu, et al. 2023; Yin, et al. 2024). MaKIN10 X1/3 are involved in the response to cold stress by phosphorylating MaMYB13, which enhances the transcription of very-long-chain fatty acids (VLCFAs) and phenylpropanoids biosynthesis-related genes, including 3-ketoacyl-CoA synthase 11 (MaKCS11), 4-coumarate-CoA ligase 6 (Ma4CL6), and peroxisomal-CoA synthetase (MaAAE1) under low temperatures (Li, et al. 2023). Cold stress can significantly inhibit the transcript and protein levels of ethylene F-box (EBF1) and abscisic acid-insensitive 5-like (ABI5-like). Their ectopic and transient overexpression in 'Fenjiao' promotes ethylene production, starch and cell wall degradation, and decreases fruit firmness, suggesting that suppressed expression of these genes is linked to fruit softening and ripening disorders caused by cold stress (Song, et al. 2022). Similarly, cold storage can significantly downregulate expression of MaIAA17-like, whose transient overexpression promotes fruit ripening by inducing softening and degreening-related genes (Chen, et al. 2023b). Low temperature stress induces various epigenetic changes (Zhu, et al. 2023), such as reducing miRNA528, which targets genes encoding copper-containing proteins and induces polyphenol oxidases (PPOs), leading to peel browning (Zhu, et al. 2020a). WRKYs are also key regulators of low

temperature-induced banana peel browning (Zhu, et al. 2023). Scientists have tried various methods to reduce CIs in banana fruits during low temperature transportation and storage. Some of these treatments, including hot water (Si, et al. 2024), *Opuntia ficus indica* mucilage (OFIM) edible coating (Shinga and Fawole 2023), and epibrassinolide treatment (Li, et al. 2022a), have been reported to have the potential to alleviate CIs in the harvested fruits by different mechanisms.

During banana fruit ripening, high temperatures can lead to the failure of chlorophyll degradation in peels, causing green ripening and a significant deterioration in fruit quality. Under high temperatures, MaMYB60, a positive regulator of chlorophyll catabolic genes, such as nonyellow coloring 1 (MaNYC1) and stay-green (MaS-GRs), will be degraded through a RING-type E3 ligase, benzoic acid hypersensitive 1 (MaBAH1)-mediated proteasomal degradation (Wei, et al. 2023c). Protein level of the chlorophyll degradation-related enzyme, MaNYC1 is significantly decreased in banana fruits ripened under high temperature through proteasomal degradation mediated by its interacting E3 ligase, MaNIP1 (Luo, et al. 2023). Another E3 ubiquitin ligase, ring zinc finger 1 (MaRZF1), also functions in green ripening by degrading MaSGR1 (Wei, et al. 2024). As green ripening caused by high temperatures greatly reduces the marketability of banana, precautions should be taken. Fortunately, cold pretreatment has been proved in effectively alleviating green ripening of banana fruits. It was rationalized that cold pretreatment can promote chlorophyll degradation by enhancing the MaCBF1 transcriptional activation ability of the Chlorophyll b reductase (MaCBR) and MaSGR1 genes (Xiao, et al. 2023).

#### Banana stress biology

# Characterization of abiotic stress resistance-related genes in bananas

Banana plants are vulnerable to a variety of environmental challenges, including cold stress, drought stress, and salt stress. Recent omics advancements produced a large amount of information laying a foundation for exploring stress tolerance/resistance genes and towards breeding of tolerant/resistant bananas. Through Agro*bacterium*-mediated genetic transformation, some transgenic banana plants are successfully conferred with enhanced tolerance/resistance to single or multiple abiotic stresses. Previous studies by our group illustrated the associated molecular mechanisms underlying the differences in cold tolerance between the cold-sensitive 'Cavendish' banana (AAA genotype) and the cold-tolerant 'Dajiao' variety (ABB genotype) through multi-omics analyses and dataset integration followed by genetic transformation verification. Overall, MEKK1, MKK2,

MAPK5, ICE1, MYBS3, PIP1/2 and POD52/P7 were demonstrated to play critical roles in the cold-tolerant 'Dajiao' (Yang, et al. 2012; Yang, et al. 2015; Dou, et al. 2016; Gao, et al. 2017; He, et al. 2018; Gao, et al. 2021; Wu, et al. 2024b) (Table 1). Under daytime conditions, 'Dajiao' responds to cold stress by enhancing its antioxidant capacity, primarily through the MAPK cascade signaling pathway. The main mechanisms in bananas' response to the cold stress are involved in the following pathways and cellular reactions: (1) reduced reactive oxygen species (ROS) generation through the photorespiratory proteins glutamate glyoxylate aminotransferase (GGAT), serine glyoxylate aminotransferase (SGAT), and serine hydroxymethyl transferase (SHMT); (2) increased scavenging of excess ROS by superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD 52 and P7); (3) prevention of membrane lipid peroxidation by lipoxygenase (LOX); and (4) maintaining cell water potential by aguaporins (MaPIP1;1, MaPIP1;2, MaPIP2;4, MaPIP2;6 and MaTIP1;3). Moreover, in darkness, we found the MAPK phosphorylation signaling pathway was predominantly induced in 'Dajiao' cells through an ABA-independent pathway. This activation led to an increased abundance of key TFs, including ICE1 and WRKY2/19/71, which enhanced cell membrane stability by elevating the levels of unsaturated linoleic acid and  $\alpha$ -linoleic acids. These adaptations contributed to the improved acclimatization of 'Dajiao' to cold stress during the day and in the dark (Wu, et al. 2024b) (Fig. 3). MusaDHN-1, a SK3-type dehydrin gene, was identified as a multiple stress-inducible gene. Banana plants overexpressing it displayed enhanced drought and salinity stress tolerance (Shekhawat, et al. 2011). The overexpression of other multiple stress-inducible genes, such as MusaSAP1 (stress associated protein 1), MusaPIP1;2 (plasma membrane intrinsic protein 1;2), MusaPIP2;6, MusaPIP2;7, also displayed improved drought and/or salinity, and/or cold tolerance, through enhanced oxidative stress tolerance and/or reduced membrane injury (Sreedharan, et al. 2012, 2013, 2015; Xu, et al. 2020) (Fig. 3).

TFs play important regulatory roles in plant stress responses. In bananas, some transgenic plants have been reportedly with enhanced abiotic tolerance/resistance. For example, the drought and salinity stress resistance of transgenic 'Rasthali' and 'Grand Naine' bananas overexpressing *MusaNAC29-like* was significantly improved by modulating phytohormone metabolism and inducing the expression of stress-responsive genes (Negi, et al. 2023). The overexpression of *MaDREB1F* can improve the cold and drought resistance of bananas by modulating protective metabolites and the antioxidant system, activating promoters of *MaAOC4* and *MaACO20* and therefore

| ~                       |
|-------------------------|
| ਿੱ                      |
| ㅎ                       |
| S                       |
| 5                       |
| S                       |
| 2                       |
| $\geq$                  |
| 5                       |
| S                       |
| 20                      |
| F                       |
| č                       |
| a)                      |
| _0                      |
| U                       |
| ÷ĕ                      |
| 5                       |
| Ř                       |
| Š                       |
| Ĺ                       |
| g                       |
| t                       |
| _                       |
| ·=                      |
| S                       |
| ÷                       |
| 5                       |
| Ļ                       |
| σ                       |
| 5                       |
| Ę                       |
| ÷                       |
| 5                       |
| ·ĕ                      |
| 0                       |
| ā                       |
| $\overline{\mathbf{O}}$ |
| ă                       |
| ž                       |
| 0                       |
| 5                       |
| ž                       |
|                         |
| _                       |
| ς                       |
| <b>A</b> 1              |
| <u> </u>                |
| 2                       |
| J.                      |
| -                       |

| Trait                     | Banana genotype                   | Transformation<br>method                                                          | Promoter     | Transformed gene                                                           | Potential molecular<br>mechanism                                                                                                                                                                                            | Efficiency                                                                                                                                                                                                                                                         | References          |
|---------------------------|-----------------------------------|-----------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Foc TR4 resistance        | Cavendish cv. Grand<br>Nain (AAA) | Agrobacte-<br>rium + Banana ECS                                                   | pNos, pZmUbi | RGA2 from a Foc TR4-<br>resistant wild banana,<br>Ced-9 from nematode      | Increasing resistance<br>to Foc TR4 possibly<br>through an R-gene-<br>like cascade path-<br>way (RGA2 lines),<br>and by preventing<br>fungus-Induced cell<br>death and maintaining<br>organelle homeostasis<br>(Ced9 lines) | Two transgenic lines<br>(RGA2-3 and Ced9-<br>21) appeared to be<br>immune to <i>Fo</i> C TR4<br>in an infected field trial<br>over a 3-year period                                                                                                                 | (Dale, et al. 2017) |
| <i>Foc</i> TR4 resistance | Cavendish cv. Grand<br>Nain (AAA) | Agrobacte-<br>rium + Banana ECS                                                   | pZmUbi       | <i>MpbHLH</i> from cold-<br>tolerant Dajiao banana                         | Strengthen banana cell<br>wall and/or scavenge<br>ROS                                                                                                                                                                       | Disease index of 2<br>transgenic plants<br>was significantly<br>lower than control<br>after 2-week inocula-<br>tion in pots under nor-<br>mal management                                                                                                           | (Li, et al. 2022b)  |
| foc TR4 resistance        | Cavendish cv. Grand<br>Nain (AAA) | Agrobacte-<br>rium + Banana ECS                                                   | pZmUbi       | Foc TR4 ERG6 double<br>strand RNAs, Foc TR4<br>ERG11 double strand<br>RNAs | Induced Foc ERG6<br>and Foc ERG11 genes<br>silencing in banana,<br>inhibited fungal<br>ergosterol synthesis<br>and conidial germina-<br>tion                                                                                | Only 30% of <i>ERG6</i> -<br>RNAi or 15% of <i>ERG11</i> -<br>RNAi plants were<br>sensitive to <i>Foc</i> TR4,<br>but more than 85%<br>of WT showed appar-<br>of WT showed appar-<br>ent Fusarium wilt<br>symptoms in a heavily<br>infected field after 2<br>years | (Dou, et al. 2020)  |
| <i>Foc</i> TR4 resistance | Furenzhi (AAcv)                   | Agrobacte-<br>rium + Banana ECS                                                   | pCaMV35S     | ThChit42 from Tricho-<br>derma harzianum                                   | Antifungal activities<br>by cleaving chitin<br>in the fungal cell wall                                                                                                                                                      | A transgenic line<br>T3 showed no dis-<br>ease symptoms<br>and remained healthy<br>after 2 months inocu-<br>lation in pots                                                                                                                                         | (Hu, et al. 2013)   |
| <i>foc</i> TR4 resistance | Taijiao (AAA)                     | <i>Agrobacterium</i> + Par-<br>ticle bombard-<br>ment + Banana Apical<br>meristem | pCaMV35S     | Human lysozyme                                                             | Antifungal activity<br>by cleaving chitin<br>in the fungal cell wall                                                                                                                                                        | Two transgenic lines<br>H-67 and H-144<br>remained healthy<br>and were able to fruit<br>in the field                                                                                                                                                               | (Pei, et al. 2005)  |

| Table 1 (continued)         |                                 |                                                                      |          |                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                  |                        |
|-----------------------------|---------------------------------|----------------------------------------------------------------------|----------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Trait                       | Banana genotype                 | Transformation<br>method                                             | Promoter | Transformed gene                                                          | Potential molecular<br>mechanism                                                                                                                                                                                                                 | Efficiency                                                                                                                                                                                                                                                       | References             |
| Foc TR4 resistance          | Pisang Nangka (AAB)             | Particle bombard-<br>ment + Banana Single<br>cauliflower-like bodies | pCaMV35S | OsTLP from rice                                                           | Antifungal activities<br>by alternating fungus<br>cell membrane integ-<br>rity leading to inhibi-<br>tion of fungal growth,<br>spore lysis, reduction<br>in spore number,<br>or reduced viability<br>of germinated spores                        | The average percent-<br>age of disease inci-<br>dence in transgenic<br>plants was 29.4% com-<br>pared to the control<br>at 89.1% after 4 weeks<br>inoculation in pots                                                                                            | (Mahdavi, et al. 2012) |
| Foc TR4 resistance          | Cavendish cv. Williams<br>(AAA) | <i>Agrobacte-</i><br><i>rium</i> + Banana ECS                        | pCaMV35S | <i>MaLYK1</i> from Williams<br>banana                                     | Resistance against Foc<br>TR4 by mediating<br>MAMP-induced<br>ROS generation<br>and defense gene<br>activation                                                                                                                                   | No obvious lesions<br>observed in inocu-<br>lated <i>MaLYK1</i> -OE lines<br>compared with WT<br>and <i>MaLYK1</i> -RNAi lines<br>in pots                                                                                                                        | (Zhang, et al. 2019)   |
| <i>Foc</i> Race1 resistance | Lady Finger (AAB)               | Agrobacte-<br>rium + Banana ECS                                      | pZmUbi   | Bcl-Xl, Ced-9, Bcl-2 3'<br>UTR                                            | Bcl-xL and /or Ced-9<br>may prevent cell death<br>and enhance plant<br>resistance character-<br>istics by contributing<br>to the maintenance<br>of organelle homeo-<br>stasis, Bcl-2 3' UTR con-<br>fers resistance to plant<br>cells is unknown | The transgenic line<br>Bcl-23' UTR-6 showed<br>a level of Foc Race1<br>resistance similar<br>to resistant wild-type<br>Grand Naine' at least 3<br>months after inocula-<br>tion in small-plant<br>bioassays                                                      | (Paul, et al. 2011)    |
| Foc Race1 resistance        | Silk cv. Rasthali (AAB)         | Agrobacte-<br>rium + Banana ECS                                      | pZmUbi   | <i>MusaDAD1, MusaBAG1</i><br>and <i>MusaB11</i> from Ras-<br>thali banana | <i>MusaBAG1</i> gene plays<br>a far greater role<br>in the control of PCD<br>in banana plants com-<br>pared to the other two<br>genes studied                                                                                                    | <i>MusaBAG1</i> over-<br>expressing plants<br>demonstrated the best<br>resistance towards <i>Foc</i><br>Racel inflection<br>in the three groups<br>of transgenic plants<br>derived from the three<br>gene constructs after 6<br>weeks in greenhouse<br>bioassays | (Ghag, et al. 2014a)   |
| Foc Race1 resistance        | Silk cv. Rasthali (AAB)         | Agrobacte-<br>rium + Banana ECS                                      | pZmUbi   | PhDef1 and PhDef2<br>from Petunia                                         | Interact with specific<br>lipids on the fungal<br>membrane and subse-<br>quently permeabilize<br>them to inhibit fungus<br>growth                                                                                                                | Four transgenic plants<br>displayed a high<br>degree of resistance<br>to <i>Foc</i> Race1 challenge<br>after 3 months inocu-<br>lation in pots                                                                                                                   | (Ghag, et al. 2012)    |

| Table 1 (continued   | (                       |                                                          |                  |                                                                                |                                                                                                                              |                                                                                                                                                                                                                             |                         |
|----------------------|-------------------------|----------------------------------------------------------|------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Trait                | Banana genotype         | Transformation<br>method                                 | Promoter         | Transformed gene                                                               | Potential molecular<br>mechanism                                                                                             | Efficiency                                                                                                                                                                                                                  | References              |
| Foc Race1 resistance | Silk cv. Rasthali (AAB) | Agrobacte-<br>rium + Banana ECS                          | pCaMV35S         | Ace-AMP1 from onion                                                            | The activity of this AMP<br>is mainly on the struc-<br>tural components<br>of the cell wall attack-<br>ing multiple targets  | Six transgenic plants<br>root challenged<br>with <i>Foc</i> Race 1<br>showed VDIs (vascular<br>disease index) rang-<br>ing from 38 to 48%<br>compared to the con-<br>trol at 100%, after 6<br>months inoculation<br>in pots | (Mohandas, et al. 2013) |
| Foc Race1 resistance | Silk cv. Rasthali (AAB) | Agrobacte-<br>rium + Banana ECS                          | pCaMV35S, pZmUbi | Ace-AMP1 from onion<br>and PFLP from sweet<br>pepper                           | Higher tolerance<br>to oxidative stress<br>caused by <i>Foc</i> Racel<br>infection                                           | Two transgenic<br>plants root chal-<br>lenged with <i>Foc</i> Race1<br>showed VDIs ranging<br>from 10 to 20% com-<br>pared to the control<br>at 96%, after 6 months<br>inoculation in pots                                  | (Sunisha, et al. 2020a) |
| Foc Race1 resistance | Silk cv. Rasthali (AAB) | Agrobacte-<br>rium + Banana ECS                          | pZmUbi           | Sm-AMP-D1 from Stel-<br>laria media                                            | Antifungal activ-<br>ity by destabilizing<br>the microbial mem-<br>branes                                                    | Two transgenic lines,<br>Sm-D1 and Sm-D2,<br>were without external<br>wilt symptoms after 6<br>months inoculation<br>in pots                                                                                                | (Ghag, et al. 2014c)    |
| Foc Race1 resistance | Silk cv. Rasthali (AAB) | Agrobacte-<br>rium + Banana ECS                          | pZmUbi           | Foc Race1 VEL intron<br>hairpin RNAS, Foc<br>Race1 FTF1 intron<br>hairpin RNAs | Induced Foc VEL<br>and Foc FTF1 genes<br>silencing in banana,<br>inhibited fungal<br>growth, development<br>and pathogenesis | Disease severity scale<br>of 7 ihpRNA-VEL and 5<br>ihpRNA-VEL transgenic<br>plants was less than<br>1 (1 = no symptoms)<br>in a 6-week-long<br>bioassay in pots                                                             | (Ghag, et al. 2014b)    |
| Foc Race1 resistance | Silk cv. Rasthali (AAB) | <i>Agrobacte-</i><br><i>rium</i> + Banana Single<br>buds | pCaMV355         | <i>GmEg</i> from soybean                                                       | Antifungal activity<br>by cleaving β-glucan,<br>a component of myce-<br>lial cell walls                                      | Performance<br>of the two transgenic<br>lines was better<br>than the control after 4<br>weeks inoculation<br>in pots                                                                                                        | (Maziah, et al. 2007)   |

| Table 1 (continued)        |                                           |                                               |                                 |                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                                                        |                             |
|----------------------------|-------------------------------------------|-----------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Trait                      | Banana genotype                           | Transformation<br>method                      | Promoter                        | Transformed gene                                                                            | Potential molecular<br>mechanism                                                                                                                                                  | Efficiency                                                                                                                                                                                             | References                  |
| Foc Race2 resistance       | Silk cv. Rasthali (AAB)                   | <i>Agrobacte-</i><br><i>rium</i> + Banana ECS | pAtUbq3                         | <i>MSI99</i> (a magainin ana-<br>logue gene)                                                | Interacted<br>with the microbial<br>membrane, resulting<br>in loss of essential<br>metabolites and mem-<br>brane depolarization<br>and uncoupling of res-<br>piration in bacteria | Five plants express-<br>ing the peptide<br>in the cytoplasm<br>and 11 transgenic<br>plants express-<br>ing the peptide<br>in the intercellular<br>spaces were resistant<br>to <i>Foc</i> Race2 in pots | (Chakrabarti, et al. 2003)  |
| Banana Xanthomonas<br>wilt | Sukali Ndiizi and Nak-<br>inyika bananas  | <i>Agrobacte-</i><br><i>rium</i> + Banana ECS | pCaMV35S                        | Plant ferredoxin-<br>like protein ( <i>Pflp</i> )<br>from sweet pepper                      | Disease resistance<br>through formation<br>of hypersensitivity<br>response-like necrosis                                                                                          | All the transgenic lines<br>except one showed<br>absolute resistance<br>to BXW after 60 days<br>inoculation in pots                                                                                    | (Namukwaya, et al.<br>2012) |
| Banana Xanthomonas<br>wilt | Sukali Ndiizi<br>and Mpologoma<br>bananas | Agrobacte-<br>rium + Banana ECS               | pCaMV35S                        | Hypersensitivity<br>response-assisting<br>protein ( <i>Hrap</i> ) gene<br>from sweet pepper | Disease resist-<br>ance resulting<br>from enhanced hyper-<br>sensitive cell death                                                                                                 | Six transgenic lines<br>showed absolute<br>resistance to BXW<br>after 60 days inocula-<br>tion in pots                                                                                                 | (Tripathi, et al. 2010)     |
| Banana Xanthomonas<br>wilt | Gonja manjaya banana                      | <i>Agrobacte-</i><br><i>rium</i> + Banana ECS | pCaMV35S                        | <i>Pflp</i> and <i>Hrap</i> from sweet pepper                                               | Stacking might<br>provide of durable<br>resistance to BXW                                                                                                                         | Seven transgenic lines<br>with stacked genes<br>showed complete<br>resistance to BXW<br>after 60 days inocula-<br>tion in pots                                                                         | (Muwonge, et al. 2016)      |
| Banana Xanthomonas<br>wilt | Dwarf Cavendish<br>(AAA)                  | <i>Agrobacte-</i><br><i>rium</i> + Banana ECS | pCaMV35S                        | ELONGATION FACTOR-<br>TU RECEPTOR ( <i>AtEFR</i> )<br>gene from <i>Arabidopsis</i>          | Enhanced resistance<br>through activation<br>of early immune out-<br>puts (e.g., ROS, defense<br>gene expression)<br>mediated by recogni-<br>tion of <i>Xcm</i> EF-Tu<br>by EFR   | Eighteen transgenic<br>lines exhibited partial<br>resistance (50–75%)<br>compared to control<br>after 60 days inocula-<br>tion in pots                                                                 | (Adero, et al. 2023a)       |
| Banana Xanthomonas<br>wilt | Sukali Ndiizi banana                      | <i>Agrobacte-</i><br><i>rium</i> + Banana ECS | CRISPR/Cas9-mediated<br>editing | Downy mildew resist-<br>ance 6 ( <i>DMR6</i> ) gene<br>from banana                          | Enhanced resistance<br>through knockout<br>of a susceptibility<br>gene during pathogen<br>infection                                                                               | One inoculated plant<br>of D15 was with-<br>out BXW symptoms<br>after 60 days inocula-<br>tion in pots                                                                                                 | (Tripathi, et al. 2021)     |
| Banana Xanthomonas<br>wilt | Gonja manjaya banana                      | <i>Agrobacte-</i><br><i>rium</i> + Banana ECS | pZmUbi                          | Xa21 pattern-recogni-<br>tion receptor from wild<br>rice                                    | Xa21 receptor may<br>recognize a micro-<br>bial determinant<br>that is conserved<br>in Xcm                                                                                        | Twelve inoculated<br>plants were with-<br>out BXW symptoms<br>after 60 days inocula-<br>tion in pots                                                                                                   | (Tripathi, et al. 2017)     |

| Table 1 (continued)               |                                                              |                                               |                                 |                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                          |                          |
|-----------------------------------|--------------------------------------------------------------|-----------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Trait                             | Banana genotype                                              | <b>Transformation</b><br>method               | Promoter                        | Transformed gene                                                                           | Potential molecular<br>mechanism                                                                                                                                                                         | Efficiency                                                                                                                                                                                                                                               | References               |
| Shelf life                        | Cavendish cv. Brazilian<br>(AAA)                             | <i>Agrobacte-</i><br><i>rium</i> + Banana ECS | CRISPR/Cas9-mediated<br>editing | <i>Ma</i> ACO1 from banana                                                                 | Promotes the shelf<br>life of banana fruit<br>by inhibiting ethylene<br>biosynthesis                                                                                                                     | MaAC01-disrupted<br>fruit remained yellow<br>or green 60 days<br>postinoculation vs. WT<br>fruit with brown spots<br>at day 21                                                                                                                           | (Hu, et al. 2021)        |
| Cold tolerance                    | Dajiao banana (ABB)<br>and Cavendish cv.<br>Grand Nain (AAA) | <i>Agrobacte-</i><br><i>rium</i> + Banana ECS | pZmUbi                          | MAPK3 (same<br>as MAPK5 in this<br>review) and ICE1<br>from cold-tolerant<br>Dajlao banana | MaMAPKS-MaICE1-<br>MaPOD P7 pathway,<br>a positive regulator<br>of cold tolerance<br>in banana                                                                                                           | Cold tolerance<br>of MAPK3-RNAi<br>plants decreased<br>at 10 °C for 7 days<br>in pots in an ambient<br>environment. Cold<br>tolerance of <i>MalCE1</i> -<br>overexpressing plants<br>increased at 10 °C<br>for 2 days followed<br>by recovery for 3 days | (Gao, et al. 2021)       |
| Cold tolerance                    | Cavendish cv. Brazilian<br>(AAA)                             | <i>Agrobacte-</i><br><i>rium</i> + Banana ECS | pZmUbi                          | <i>MYBS3</i> from cold-toler-<br>ant Dajiao banana                                         | <i>MpMYBS3</i> -overex-<br>pressing lines had<br>a higher proline<br>content, accumulated<br>less malondialdehyde<br>and displayed lower<br>levels of electrolyte<br>leakage                             | Cold tolerance<br>of <i>MpMYB5</i> -over-<br>expressing plants<br>increased at 10 °C<br>for 2 days followed<br>by recovery for 3 days                                                                                                                    | (Dou, et al. 2016)       |
| Drought and salinity<br>tolerance | Silk cv. Rasthali (AAB)                                      | <i>Agrobacte-</i><br><i>rium</i> + Banana ECS | pZmUbi                          | DHN-1 from banana                                                                          | Increased the protec-<br>tive antioxidative<br>capacityunderdrought-<br>and salt-stress<br>conditions, reducing<br>free radical-induced<br>damage to the cellular<br>membranes of trans-<br>genic plants | Transgenic lines<br>responded sig-<br>nificantly better<br>after the initiation<br>of drought or salt<br>stress                                                                                                                                          | (Shekhawat, et al. 2011) |

| Table 1 (continued)                     |                                                                  |                                 |                    |                           |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                      |                           |
|-----------------------------------------|------------------------------------------------------------------|---------------------------------|--------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Trait                                   | Banana genotype                                                  | Transformation<br>method        | Promoter           | Transformed gene          | Potential molecular<br>mechanism                                                                                                                                                                            | Efficiency                                                                                                                                                                                                                                                           | References                |
| Drought and salinity tolerance          | Silk cv. Rasthali (AAB)                                          | Agrobacte-<br>rium + Banana ECS | pZmUbi             | SAP1 from banana          | Improves capacity<br>to scavenge free radi-<br>cals under drought/<br>salt stress conditions,<br>reducing free radical-<br>induced damage<br>to the cellular mem-<br>branes of transgenic<br>plants         | Small, uniform, in vitro<br>transgenic shoots<br>overexpressing<br><i>MusaSAP1</i> tolerated<br>simulated drought<br>and salt stress (after<br>10 days in rooting<br>medium supple-<br>merted with 100<br>mM mannitol or 100<br>mM NaCI) better<br>than the controls | (Sreedharan, et al. 2012) |
| Drought and salinity<br>tolerance       | Silk cv. Rasthali (AAB)<br>and Cavendish cv.<br>Grand Nain (AAA) | Agrobacte-<br>rium + Banana ECS | pZmUbi             | MAC29-like<br>from banana | Increases JA and SA<br>content, further elevat-<br>ing the antioxidant<br>capacity of transgenic<br>plants                                                                                                  | Transgenic cv. Rasthali<br>and cv. Grand Naine<br>overexpressing<br><i>MusaNAC29-like</i> had<br>superior tolerance<br>of drought and salinity<br>stress, but overexpres-<br>sion retarded growth<br>and yield of the trans-<br>genic banana fruits                  | (Negi, et al. 2023)       |
| Cold, drought<br>and salinity tolerance | Silk cv. Rasthali (AAB)                                          | Agrobacte-<br>rium + Banana ECS | pZmUbi, pMusaDHN-1 | PIP1;2 from banana        | Lower malondialde-<br>hyde levels, elevated<br>proline and rela-<br>tive water content,<br>and higher photo-<br>synthetic efficiency<br>in transgenic lines<br>under different abiotic<br>stress conditions | Transgenic banana<br>plants overexpressing<br><i>MusaPIP1,2</i> had better<br>abiotic stress survival<br>characteristics                                                                                                                                             | (Sreedharan, et al. 2013) |
| Salinity tolerance                      | Silk cv. Rasthali (AAB)                                          | Agrobacte-<br>rium + Banana ECS | pZmUbi, pMusaDHN-1 | PIP2,6 from banana        | Better photosyn-<br>thetic efficiency<br>and less membrane<br>damage in transgenic<br>lines under salt stress<br>conditions                                                                                 | Transgenic banana<br>plants overexpressing<br><i>MusaPIP2;6</i> used con-<br>stitutive or inducible<br>promoter led to higher<br>salt tolerance                                                                                                                      | (Sreedharan, et al. 2015) |

Cheng et al. Molecular Horticulture (2024) 4:42

| Table 1 (continued)                     |                       |                                                                                                            |          |                           |                                                                                                                                                                                                                               |                                                                                                                                                           |                   |
|-----------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------|----------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Trait                                   | Banana genotype       | <b>Transformation</b><br>method                                                                            | Promoter | Transformed gene          | Potential molecular<br>mechanism                                                                                                                                                                                              | Efficiency                                                                                                                                                | References        |
| Drought, cold<br>and salinity tolerance | Mas cv. Gongjiao (AA) | Particle bombard-<br>ment + <i>Agrobacte-</i><br><i>nium</i> + buds of imma-<br>ture banana male<br>flower | pCaMV35S | PIP2;7 from banana        | Conferred toler-<br>ance by maintaining<br>an osmotic balance,<br>reducing membrane<br>injury, and improving<br>ABA levels                                                                                                    | Transgenic banana<br>plants overexpressing<br><i>MusaPIP2:7</i> improved<br>tolerance to multi-<br>ple stresse, includ-<br>ing drought, cold,<br>and salt | (Xu, et al. 2020) |
| Cold and drought<br>tolerance           | Mas cv. Gongjiao (AA) | Particle bombard-<br>ment + <i>Agrobacte-</i><br><i>rium</i> + buds of imma-<br>ture banana male<br>flower | pCaMV35S | <i>DREB1F</i> from banana | Conferred toler-<br>ance by common<br>modulation of the pro-<br>tectant metabolite<br>levels of soluble sugar<br>and proline, activating<br>the antioxidant system,<br>and promoting jas-<br>monate and ethylene<br>syntheses | Transgenic banana<br>plants overexpressing<br><i>MaDREB1F</i> increased<br>banana resistance<br>to cold and drought<br>stress                             | (Xu, et al. 2023) |



**Fig. 3** Overview of the role of key genes in diverse stressors of banana. COLD1, chilling tolerance divergence 1; MEKK1, mitogen-activated protein kinase kinase kinase kinase 1; MKK2, mitogen-activated protein kinase kinase 2; MAPK5, mitogen-activated protein kinase 5; ICE1, inducer of CBF expression 1; DREB1F, dehydration-responsive element binding protein (DREB) transcription factor 1F; WRKY2/19/71, WRKY domain protein 2/19/71; TIP, tonoplast intrinsic protein; GGAT, glutamate glyoxylate aminotransferase; SGAT, serine glyoxylate aminotransferase; SHMT, serine hydroxymethyl transferase; LOX, lipoxygenase; CAT, catalase; SOD, superoxide dismutase; POD P7, peroxidase P7; DHN-1, dehydrin 1; SAP1, stress associated protein 1; PIP, plasma membrane intrinsic protein; PFLP, plant ferredoxin-like protein; HRAP, hypersensitive response-assisting protein; DMR6, downy mildew resistance 6; EFR, elongation factor-TU receptor; Xa21, pattern-recognition receptor; eBSV, endogenous banana streak viruses; ETI, effector-triggered immunity; RGA2, resistance gene analog 2; ERG6, C-24 sterol methyltransferase 6; ERG11, cytochrome P450 lanosterol C-14α-demethylase; AMP, antimicrobial peptide; MYB36, MYB domain protein 36; bHLH, basic helix-loop-helix; PAL, phenylalanine ammonia lyase; FSA, fusaric acid; *Foc* TR4, *Foc* tropical race 4

promoting jasmonate (JA) and ethylene biosynthesis (Xu, et al. 2023) (Fig. 3).

In addition to these genes, whose functions have been verified through stable genetic transformation in bananas, the heterologous expression of some other genes can also lead to the enhanced stress tolerance of transgenic plants. Transgenic Arabidopsis overexpressing a cold-, salt- and drought-inducible MaROP5g displayed increased salt tolerance (Miao, et al. 2018). The overexpression of droughtinducible MaWRKY80 significantly improved the drought resistance of transgenic Arabidopsis plants by modulating the expression of NCED (9-cis-epoxycarotenoid dioxygenase) and ABA biosynthesis (Liu, et al. 2020b). Moreover, through genome-wide identification and expression analyses, some genes were also identified to be associated with abiotic stress tolerance in bananas (Jangale, et al. 2019; Meng, et al. 2020; Anuradha, et al. 2022). With the development and application of banana genetic transformation methods, the functions of these candidate stress-responsive genes will be further investigated.

# Characterization on banana biotic stress resistance-related genes

#### Fusarium wilt disease

Several known banana diseases are debilitating and drastically reduce yield. Fusarium wilt (FW), or Panama disease, caused by Fusarium oxysporum f. sp. cubense (Foc) is the most devastating one and can cause a 100% yield loss of many banana cultivars (Rocha, et al. 2022). Among the four races of Foc, three (races 1, 2, and 4) specifically affect bananas, and tropical race 4 is the most destructive one. As a semi-necrotrophic fungus, the infection process of *Foc* in banana roots involves four key steps: 1) toxins (such as phytotoxin fusaric acid, FSA) secretion to induce programmed cell death (PCD) by regulating the expression of genes involved in mitochondrial functions (Liu, et al. 2020a); 2) cell wall-degrading enzymes secretion to facilitate invasion of the fungus into plant cells; 3) haustorium expansion to ensure continuous nutrient absorption; and 4) effector secretion to destroy the immune system of the plant cells and achieve stable colonization. To mitigate this disease, various genetic

engineering strategies at multiple levels have been employed (Table 1).

Despite no gene being reported to detoxify F. oxysporum toxin, overexpressing negative regulatory genes of the PCD pathway in transgenic plants has shown promise in preventing cell death due to pathogen attack (Ghag, et al. 2014a). For instance, 'Lady Finger' bananas overexpressing animal apoptosis-negative regulator genes such as Bcl-xL, Ced-9, and Bcl-2 3' UTR demonstrated improved resistance to Foc Race1 (Paul, et al. 2011). Three apoptosis-related genes, MusaDAD1, MusaBAG1, and MusaBI1, have been identified, with MusaBAG1 conferring the best resistance among transgenic 'Rasthali' bananas (Ghag, et al. 2014a). Additionally, overexpression of the Ced9 gene has increased Foc Race1 resistance in both 'Lady Finger' and 'Rasthali' bananas (Paul, et al. 2011; Sunisha, et al. 2020b). These reports demonstrated that inhibiting cell death, or apoptosis, was an effective approach for increasing the *Foc* resistance of bananas (Magambo, et al. 2016) (Fig. 3).

Genomic and transcriptomic insights have revealed that MpMYB36 promoted the expression of lignin biosynthesis-related genes through its regulation of phenylalanine ammonia lyase (PAL), thereby strengthening cell walls in 'Plantain' bananas (Xie, et al. 2024). We also found that the overexpression of the *MpbHLH* gene (i.e. *ICE1* gene cloned from cold-tolerant 'Dajiao', ABB genotype) greatly upregulated the expression levels of stress-related genes and accumulations of PAL and POD enzymes, and consequently, two transgenic 'Cavendish' banana lines displayed superior resistance to *Foc* TR4 (Li, et al. 2022b) (Fig. 3).

The expression of antifungal proteins or small molecules in banana cells is an effective measure to prevent pathogenic fungi from obtaining nutrients and further invasion. Transgenic bananas overexpressing antifungal protein genes, such as MSI99 (a magainin analogue gene), Ace-AMP1, Stellaria media defensin gene (Sm-AMP-D1), Petunia floral defensins (PhDef1 and PhDef2), exhibited enhanced resistance to Foc and other pathogens (Chakrabarti, et al. 2003). Host-induced gene silencing (HIGS) of Foc genes has been applied in the genetic breeding of bananas to improve resistance against FW (Ghag, et al. 2014b). The HIGS of some vital fungal genes, such as *vel*vet (VEL), Fusarium transcription factor 1 (FTF1), C-24 sterol methyltransferase 6 (ERG6) and cytochrome P450 lanosterol C-14 $\alpha$ -demethylase (ERG11), can efficiently confer bananas with resistance to *Foc* in pots, especially the ERG11-RNAi lines created by our group, showed more apparent Foc TR4 resistance in a heavily infected field for 2 years (Dou, et al. 2020). Our research data not only provides an elite broad-spectrum resistance gene in banana breeding using HIGS technology, but also paves a theoretical foundation for developing double stranded RNA fungicide to control FW (Dou, et al. 2020) (Fig. 3). Heterologous expression of some hydrolases actively attacking fungal cell walls can also improve FW resistance. Some disease resistance-related genes, including the *Trichoderma harzianum* endochitinase gene *chit42* (Hu, et al. 2013) and soybean *endo*  $\beta$ -1,3-glucanase gene (*GmEg*) (Maziah, et al. 2007), have also been successfully used to create banana transgenic lines with improved *Foc* resistance. Stable overexpression of some human and animal genes has also reportedly enhanced the resistance of bananas to FW, the overexpression of human lysozyme (HL) has delayed FW symptoms in transgenic bananas (Pei, et al. 2005).

Host resistance is the most effective strategy for the management of Foc. Although function of the native R gene in resisting Foc TR4 has been investigated, banana native R gene specific to each of the three Foc races has not been identified yet. Two transgenic 'Cavendish' lines overexpressing resistance gene analog 2 (RGA2), a gene isolated from a Foc TR4-resistant M. acuminata ssp. malaccensis, showed no disease symptoms during a three-year field experiment (Dale, et al. 2017) (Fig. 3), whether it is resistant to other Foc races is unknown. Chen et al. (2023a) reported a 959 kb region on chromosome 3 of the 'DH-Pahang' reference assembly v4 of Foc TR4 and Foc subtropical race 4 (Foc STR4) resistance using two segregating populations of *M. acuminata* ssp. malaccensis. Within this region, a gene encoding a leaf rust 10 disease-resistance locus receptor-like protein kinase-like 2.1 (LRK10L-2.1, Macma4\_03\_g32220.1) was an important candidate gene associated with Foc TR4 and Foc STR4 resistance (Chen, et al. 2023a). MaLRR-RLP74 and MaLRR-RLP75 were recommended as a good starting point to search genes responsible for Foc Race1 resistance (Álvarez-López, et al. 2022). Genomics studies demonstrated that more resistance genes, and greater dramatic expression changes of many resistance genes in response to pathogens were found in the B subgenome (Li, et al. 2024; Xie, et al. 2024), suggesting that the exploration of specific resistant genes in the B subgenome could provide another promising avenue for banana disease resistance breeding.

#### Bacterial and other diseases

In addition to FW, the banana industry is also severely undermined by diseases caused by other fungal pathogens, and by bacteria, viruses, and nematodes. Among them, Banana Xanthomonas wilt (also called Bacterial wilt disease, BXW) caused by *Xanthomonas campestris* pv. *musacearum (Xcm)* can destroy a plantation (Tripathi, et al. 2017). Several *R* genes and *AMPs* have been successfully transformed into bananas and identified

with ability to control bacterial pathogens (Tripathi, et al. 2010; Namukwaya, et al. 2012; Tripathi, et al. 2014). Transgenic bananas overexpressing sweet pepper plant ferredoxin-like protein gene (PFLP)/hypersensitive response-assisting protein gene (HRAP) have been subjected to BXW resistance evaluation in Uganda field trails (Tripathi, et al. 2016). Transgenic banana 'Gonja manjaya' expressing stacked HRAP and PFLP genes also displayed improved resistance against BXW, but stacked transgenic lines showed no synergistic effect (Muwonge, et al. 2016). Moreover, the overexpression of the Arabidopsis elongation factor-TU receptor (AtEFR) gene in dwarf Cavendish displayed enhanced resistance against the BXW pathogen (Adero, et al. 2023a). Recently, it was reported that editing of the downy mildew resistance 6 (DMR6) orthologue gene could confer transgenic banana with enhanced resistance to BXW (Tripathi, et al. 2021) (Fig. 3).

Nematodes and viruses are also important limiting factors in banana fruit production. It was recognized that fruit losses caused by nematodes can be up to 50% (Tripathi, et al. 2017). Banana bunchy top disease caused by Banana bunchy top virus (BBTV) is one of the most devastating banana diseases in the most banana cultivation areas. The transformation of a *cysteine proteinase inhibitor* and/or synthetic peptide in plantain can lead to enhanced resistance to nematodes in the field (Tripathi, et al. 2017) (Fig. 3). For virus diseases control, several approaches, such as post-transcriptional gene silencing (PTGS), RNA interference (RNAi) and virus-activated cell death, and CRISPR/Cas9 editing of virus genes, have been applied (Tripathi, et al. 2019).

#### Molecular breeding of bananas

Although most cultivated bananas are of sterile and polyploidy characteristics, banana breeding has advanced greatly in the past decades. Through adaption of somaclonal variation, artificial mutation, hybridization and ploidy breeding measures, breeders have discovered and developed many new banana cultivars. Recently, a banana marker database was released (Biswas, et al. 2024), which will greatly facilitate the identification of mutants and crossing progenies (Fig. 4).

Thanks to the continuous optimization of banana regeneration, propagation and transformation systems, plus rapid developments in genomics and high throughput sequencing techniques, the molecular breeding of bananas has accelerated rapidly. In the early years of banana genetic transformation research, apical meristems and buds were frequently used, resulting in high proportions of chimeras. Therefore, embryogenic cell suspensions (ECS) are now preferentially used as explants for banana genetic transformation (Table 1). ECSs of an increasing number of banana cultivars are successfully produced by developing and optimizing strategies for improving somatic embryogenesis (Adero, et al. 2023b).

Genetic transformation systems for bananas have been successfully established and used in the functional analysis of many fruits ripening-, quality-, and stressrelated genes (as described in previous sections and Table 1). Additionally, functions of some noncoding RNAs (ncRNA) have also been validated through genetic transformation. For example, overexpression of the *Musa miR397* can enhance the plant biomass of transgenic bananas by two- to three-fold (Patel, et al. 2019). In the future, the functions of more genes and ncRNAs will be investigated using stable banana genetic transformation methods.

Although many successful cases of genetic transformation have been reported, the transformation efficiency of most banana species is still relatively low. Scientists have tried numerous methods to enhance the efficiency of various cultivars. For example, the addition of melatonin increased the transformation efficiency of 'Grand Naine' banana by approximately 1.5-fold (Shivani and Tiwari 2019). The application of developmental regulators (DRs) has the potential of inducing meristem and improving genetic transformation efficiency (Hao, et al. 2024). In banana, two *DR* genes, *MaBBM2* and *MaWUS2*, have been proposed as promising molecular markers of embryogenicity (Shivani, et al. 2017), indicating a potential role in improving the efficiency of banana genetic transformation.

Given its ability to create precise alterations or mutations in the plant genome, CRISPR/Cas9-based genome editing has emerged as a powerful tool for banana improvement and breeding (Tripathi, et al. 2020, 2023; Wu, et al. 2020). To increase the mutation efficiency in bananas, our group introduced an endogenous U6c promoter and a banana codon-optimized Cas9 into the CRISPR/Cas9-mediated genome editing system, resulting in a four-fold increase in mutation efficiency (Zhang, et al. 2022). To obtain marker-free or transgene-free modified bananas, steroid-inducible recombinase platform (Kleidon, et al. 2020), REG-2 promoter-driven gene-deletion system (Hu, et al. 2023), particle bombardment (Awasthi, et al. 2022) were tested and have been successfully applied in banana genome editing. CRISPR/ Cas9 genome editing reveals a notable success in creating banana resources with altered agronomic traits, including the MaGA20ox2 modified semi-dwarf (Shao, et al. 2020) and *MaACO1* disrupted shelf-life extended bananas (Hu, et al. 2021), both created by our group.

It should be noted that the transgenic 'Pei chiao' banana has been successfully used to produce porcine reproductive and respiratory syndrome virus (PRRSV) antigen by overexpressing the *ORF5* gene of PRRSV (Chan, et al.



Fig. 4 Application of multi-omics for enhancing the molecular breeding of bananas

2013). Pigs can be immunized with transgenic recombinant GP5 protein after being orally fed with these transgenic banana leaves. This has opened a new avenue for producing vaccines against PRRSV. Moreover, transgenic bananas are uniquely suitable for producing edible plant-based vaccines against both animal and human diseases, with importantly manufacturing and delivery advantages compared to conventional vaccines (Sharma and Sood 2011; Maji, et al. 2016).

## **Challenges and future perspectives**

Over the past decades, tremendous progress has been made in understanding complex genetic background and evolutionary relationship of bananas, the biology of fruit ripening, and multi-omics based stress responses, and developing powerful breeding approaches to create elite banana germplasms. For the roads ahead, cutting-edge technologies such as new multi-omics technologies, precise genome-editing tools, high-throughput specific promoter identification and transgene-free genetic transformation methods will be further developed and applied to extend our understanding of unsolved molecular biology questions and expand the genetic diversity to overcome the challenges of several biotic/abiotic stresses and fruit quality problems in banana.

# Multi-omics technologies will accelerate the progress of banana researches

Although many omics technologies have been successfully utilized to address key issues of banana, some new omics techniques have not been applied in banana yet. Bananas have a long, complex history of domestication, with more than 1,000 varieties of bananas cultivated around the world (Justine, et al. 2022). Therefore, detecting genetic differences related to their agronomic traits is very difficult. A pangenome can offer a way to explore the underlying molecular diversity and phenotypic variations in plants from the same genus and even the same family (Morgante, et al. 2007). Although a pangenome study of bananas has been reported, there are only 15 banana accessions included in the study (Rijzaani, et al. 2022). Thus, a pangenome covering more banana accessions and their relative species is especially necessary to provide a broader array of the banana origination and domestication, and therefore will be beneficial to support its breeding programs.

Current research at the single-cell level has increasingly become more common in plant science (Yu, et al. 2023). Single-cell multi-omics technologies enable to characterize cellular states and activities in organisms at the single-cell level by integrating profiles of the genome, transcriptome, proteome, metabolome, epigenome, and other sub-omes, and are revolutionizing molecular cell biology research (Baysoy, et al. 2023). These technologies enable systematic temporal comparisons for different cell types in specific tissues at various development stages and in response to various environmental and biotic stresses. They also lay a solid foundation for exploring cell-specific and tissue-specific genes and for distinguishing spatial and temporal changes of gene expression, protein and metabolite accumulations, epigenomic modifications and so on (Xia, et al. 2022; Longo, et al. 2021). We anticipate that the single-cell omics analysis will be applied for the banana research field soon.

# Overcoming the fertility barriers to promote the diversity of banana germplasm

The conventional crossbreeding of bananas for increased yield, better consumer attributes, and enhanced resistance against stressors has been hampered by inherent male and female sterility (Waniale, et al. 2024). Banana cultivars with AA and BB genotypes had higher pollen viability than banana cultivars containing triploid genomes that produce abnormal pollen (male sterility) due to partial homoeologous chromosome pairing of A and B during the prophase I of meiotic cell division. This process includes non-reducing chromosome segregates of trivalent or tetravalent pairings in anaphase I, leading to unbalanced genome transmission in gametic cells (Mingmanit, et al. 2023). In addition, non-viable pollen development in banana might be associated with the high expression of both *tapetum determinant 1 (TPD1A)* and MYB80 genes (Hu, et al. 2020; Mingmanit, et al. 2023). Meiotic errors, embryo sac defects, and pollenpistil interactions contribute to female sterility (Waniale, et al. 2024). Based on a genome-wide association analysis in bananas, a putative orthologous gene to Histidine Kinase CKI1 was identified as a strong candidate gene for female sterility (Sardos, et al. 2016). For diploid sterile bananas, the potential role of TPD1A and CKI1 in male or female sterility would be of major importance for marker-assisted selection and gene modification, to cultivate fertile diploids with excellent traits. The triploid desert bananas: 'Cavendish' and 'Gros Michel', are the two most important varieties of international trade for more than one hundred years, yet their extremely low fertility has resulted in an underutilized total gene pool. If we can learn the strategy of creating clonal gamete that makes meiosis becomes mitotic (MiMe) from Arabidopsis, rice and tomato (d'Erfurth, et al. 2009; Wang, et al. 2019a, 2024), and so regulate the meiotic process and get clonal gametes in the triploid bananas, it may enhance their male or female fertility and produce new, heterosis, polyploid banana bred with the above modified diploid parents.

# Establishment of a transgene-free genome editing system, and exploration of new transgenic technologies

While vigorously promoting the combination of traditional banana breeding and molecular-assisted breeding methods, greater efforts should also be made to support

the research and application of modern biotechnological breeding methods such as genetic engineering. Many transgenic crops have been developed using plant genetic engineering to improve insect resistance or herbicide tolerance and to enhance quality traits, but most have been used for research purposes and not yet been commercialized (Garg, et al. 2018). An RGA2-overexpressing Cavendish variety (QCAV-4) resistant to Foc TR4 was approved for commercial cultivation by the Office of the Gene Technology Regulator in Australia this year (Turrell 2024). This suggests a bright future for banana molecular breeding. To inactivate or introduce new genes during this process, especially the banana's own genes, needs to be done in a targeted, specific manner that overcomes the technical shortcomings of traditional breeding. It must also confront the apparent negative public perception of plant genetic modification, gene editing, and cis-transgenesis that are gradually becoming the mainstream of banana molecular breeding, with transgenefree being the main direction of development. The main cultivated banana varieties are heterozygous triploids, and their current genetic improvement is mainly based on plant regeneration using Agrobacterium-mediated delivery into banana ECS cells to avoid chimera formation. Marker gene-free, trait-improved progeny have been produced using inducible or tissue-specific promoter-driven recombinase systems (Chong-Pérez, et al. 2012; Kleidon, et al. 2020; Hu, et al. 2023). Many approaches have been implemented to deliver CRISPR/ Cas9 complex directly into plant cells to get transgenefree plants. For this, our group established a PEG-mediated banana protoplast transformation system based on DNA and CRISPR/Cas9 ribonucleoprotein complexes for banana (Wu, et al. 2020), but the protoplast regeneration remains a bottleneck for bananas. To date, only one study obtained transgene-free CCD4 mutated banana by a particle bombardment method for delivery of plasmid vectors to banana ECS cells (Awasthi, et al. 2022). In our opinions, using the CRISPR/Cas9 gene-editing system in combination with a transposase (e.g. *PiggyBac*) could be a more effective way to create knockout and knockin transgene-free bananas (Tripathi, et al. 2023; Liu, et al. 2024) (Fig. 4).

# Elite banana breeding needs tissue specific expression of important trait genes

To better manage biotic and abiotic stresses and improve the nutritional quality of banana fruits, the molecular breeding of bananas needs to express important trait genes in appropriate tissues for optimal results. Researchers developed the provitamin A-enriched golden banana using two fruit-specific promoters of the *expansin1* gene (*Exp1*) and the *ACO* gene for driving MtPsy2a gene expression, these biofortified transgenic bananas produce three-fold more provitamin A in the fruit peel and pulp compared to fruit from non-transgenic control plants (Paul, et al. 2017). Banana acidic chitinase class III (MaChIII) is an abundant fruit-specific storage protein that was not present in peel, corm, meristem, or root tissues, while the gene's expression was turned off in the presence of ethylene (Suárez-Rodríguez, et al. 2022). The MaChIII promoter can also be used as an excellent banana fruit-specific promoter to express the target trait genes at high levels in early development of banana fruit. To ensure the specific expression of Foc TR4-resistant genes in banana roots. James et al. (2022) analyzed the root-specific promoters of several species in tobacco and banana, and found that the promoter of the MaTIP2 gene was highly active in banana roots. Most cultivated bananas are vegetatively propagated triploid. It is not feasible to eliminate the integrated exogenous DNA cassette from the genome by genetic segregation following crossing or selfing. This is a limitation to the use of gene-editing techniques in molecular breeding of bananas. Our group constructed a CRISPR vector including FLP recombinase gene controlled by the embryospecific promoter *REG-2*, can delete integrated selection marker genes without extra treatment and the regenerated bananas are marker gene-free (Hu, et al. 2023). Until now, most of the candidate tissue-specific banana promoters were strongly expressed in the target tissue, but few were truly tissue-specific (Paul, et al. 2017; James, et al. 2022). Therefore, we believe that further transcriptomic and genetic transformation experiments are highly needed to mine excellent tissue-specific promoters in the banana genome. In particular, the identification of endogenous root-specific promoters in banana combined with endogenous disease resistance genes would be very beneficial in solving the international problem of Fusarium wilt of banana through marker-free/transgene-free based genome modification (Fig. 4).

The recent advances in banana molecular biology offer means for gaining more insights in the genetics of the crops and to identifying key genes that could lead to accelerating *Musa* betterment. Sustainable breeding of new banana varieties with high-yield, high-quality, and resistance is of great importance for ensuring food security and sustainable agriculture. Further integration of these biological knowledge and exploration of new biotechnological approaches will dramatically accelerate the process of molecular breeding to produce more new elite banana varieties.

## Abbreviations

| 1-MCP | 1-Methylcyclopropene       |
|-------|----------------------------|
| 4CL6  | 4-Coumarate-CoA ligase 6   |
| AAE   | Peroxisomal-CoA synthetase |

| ABA       | Abscisic acid                                             |
|-----------|-----------------------------------------------------------|
| ABI5-like | Abscisic acid-insensitive 5-like                          |
| ACO       | 1-Aminocyclopropane-1-carboxylic acid oxidase             |
| ACS       | 1-Aminocyclopropane-1-carboxylic acid synthase            |
| AMPs      | Antimicrobial peptides                                    |
| AMY       | α-Amylase                                                 |
| Aux/IAA   | Auxin/Indole-3-acetic acid                                |
| BAG       | Bcl-2-associated athanogene                               |
| BAH       | Benzoic acid hypersensitive                               |
| BAM       | β-Amylase                                                 |
| BBTV      | Banana bunchy top virus                                   |
| BI1       | Bcl-2-associated X protein (BAX) inhibitor                |
| BR        | Brassinosteroid                                           |
| BXW       | Banana Xanthomonas wilt                                   |
| BZR       | Brassinazole resistant                                    |
| CAI       | Catalase                                                  |
| CBR       | Chlorophyll <i>b</i> reductase                            |
| CCD       | Carotenoid cleavage dioxygenase                           |
| Chili     | Acidic chitinase class III<br>Chilling inium              |
|           |                                                           |
|           | Histidine kinase                                          |
| CUR       | Conditeguiated gene                                       |
| CTS MMT   | Chitacan montmorillopito                                  |
|           | Defender against death domain                             |
|           |                                                           |
|           | Debudrin gene                                             |
| DMR       | Downy mildow resistance                                   |
| DR        | Downy mildew resistance                                   |
| FAHR      | East African highland banana                              |
| FRF       | Ethylene-insensitive-binding E-box protein                |
| ECS       | Embryogenic cell suspension                               |
| FFR       | Flongation factor-TU receptor                             |
| FII       | Ethylene insensitive-like                                 |
| ERG6      | C-24 sterol methyltransferase 6                           |
| ERG11     | Cvtochrome P450 lanosterol C-14α-demethylase              |
| ERS       | Ethylene response sensor                                  |
| EXP       | Expansin                                                  |
| Foc       | Fusarium oxysporum f. sp. cubense                         |
| Foc TR4   | Foc tropical race 4                                       |
| Foc STR4  | Foc subtropical race 4                                    |
| FSA       | Fusaric acid                                              |
| FTF       | Fusarium transcription factor                             |
| FW        | Fusarium wilt                                             |
| GGAT      | Glutamate glyoxylate aminotransferase                     |
| GmEg      | Soybean endo β-1,3-glucanase                              |
| GWD       | Glucan, water dikinase                                    |
| HAD       | Histone deacetylase                                       |
| HIGS      | Host-induced gene silencing                               |
| HL        | Human lysozyme                                            |
| HRAP      | Hypersensitive response-assisting protein                 |
| HW        | Hydrogen water                                            |
| ICET      | Inducer of CBF expression 1                               |
| KCS       | 3-Ketoacyi-CoA synthase                                   |
|           | Lipoxygenase                                              |
| LKKTUL    | kipaca lika                                               |
| ICE       | Killidse-like<br>Starch related phosphatase Like Sov Equr |
| MAN       | Mannanase                                                 |
| MARK      | Mitogen-activated protein kinase                          |
| MEKK      | MECGEN activated protein kinase                           |
| MiMe      | Mitosis instead of meiosis                                |
| MKK       | Mitogen-activated protein kinase kinase                   |
| NCED      | 9-Cis-epoxycarotenoid dioxygenase                         |
| NYC       | Nonvellow coloring                                        |
| OFIM      | Opuntiaficusindica Mucilage                               |
| PAL       | Phenylalanine ammonia lyase                               |
| PCD       | Programmed cell death                                     |
| PE        | Pectin esterase                                           |
|           |                                                           |

| PFLP   | Plant ferredoxin-like protein                               |
|--------|-------------------------------------------------------------|
| PG     | Polygalacturonase                                           |
| PhDef  | Petunia floral defensing                                    |
| PIP    | Plasma membrane intrinsic protein                           |
| PL     | Pectate lyase                                               |
| POD    | Peroxidase                                                  |
| PRRSV  | Produce porcine reproductive and respiratory syndrome virus |
| PTGS   | Post-transcriptional gene silencing                         |
| RGA2   | Resistance gene analog 2                                    |
| RNAi   | RNA interference                                            |
| ROP    | Rho-like GTPase                                             |
| ROS    | Reactive oxygen species                                     |
| RZF    | Ring zinc finger                                            |
| SAP    | Stress associated protein                                   |
| SGAT   | Serine glyoxylate aminotransferase                          |
| SGR    | Stay-green                                                  |
| SHMT   | Serine hydroxymethyl transferase                            |
| SNP    | Single nucleotide polymorphism                              |
| SOD    | Superoxide dismutase                                        |
| SPS    | Sucrose-phosphate synthase                                  |
| TFs    | Transcription factors                                       |
| Thchit | Trichoderma harzianum endochitinase                         |
| TPD1   | Tapetum determinant 1                                       |
| VEL    | Velvet                                                      |
| VLCFAs | Very-long-chain fatty acids                                 |
| Хст    | Xanthomonas campestris pv. musacearum                       |
| XET    | Xyloglucan endotransglycosylase                             |
| XTH    | Xyloglucan endotransglucosylase/hydrolase                   |
| XYL    | β-D-xylosidase                                              |
| ncRNA  | Noncoding RNA                                               |

#### Acknowledgements

We thank Professors Sheng Zhang (Cornell University), John Hu (University of Hawai'i) and Shijuan Yan (Guangdong Academy of Agricultural Sciences) for critical reading of this manuscript and helpful discussion. The figures 2, 3 and 4 were created with BioRender.com

#### Authors' contributions

CC wrote the sections on Abstract, Introduction, Origin and domestication of bananas, Challenge and future perspectives. GD and OS wrote the section on Advances in banana fruit ripening biology, and prepared for Figs. 1, 2, 4 and Table 1. SW wrote the majority section of Banana stress biology and prepared for Fig. 3. GY and QY drafted the subsection of Research on molecular breeding of bananas and edited the entire manuscript. All the authors read, provided inputs and approved the final version of the manuscript.

#### Funding

This review was supported by the Research Fund of Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture (2021TDQD003), the Laboratory of Lingnan Modern Agriculture Project (NT2021004), the Young and Middle-aged Discipline Leader "Jin Ying light" Training Program of Guangdong Academy of Agricultural Sciences (R2023PY-JG004), Outstanding Team Project of Guangdong Academy of Agricultural Sciences (202102TD), the Modern Agricultural Innovation Team Project of Guangdong Province (2023KJ106 and 2022KJ106) and the Banana Seed Industry Innovation Park Project of the Guangdong Provincial Department of Agriculture and Rural Affairs (2022-NJS-00–001).

#### Data availability

All data discussed in this review are associated with the supporting primary research papers.

#### Declarations

**Ethics approval and consent to participate** Not applicable.

#### **Consent for publication**

All authors hereby consent to publication of the work.

#### **Competing interests**

The authors declare no competing financial interests.

Received: 16 October 2024 Accepted: 24 October 2024 Published online: 02 December 2024

#### References

- Adero M, Tripathi JN, Oduor R, Zipfel C, Tripathi L. Transgenic expression of *Arabidopsis ELONGATION FACTOR-TU RECEPTOR (AtEFR)* gene in banana enhances resistance against *Xanthomonas campestris* pv. *musacearum*. PloS One. 2023a;18(9):e0290884.
- Adero M, Tripathi JN, Tripathi L. Advances in somatic embryogenesis of banana. Int J Mol Sci. 2023b;24(13):10999.
- Álvarez-López D, Herrera-Valencia VA, Góngora-Castillo E, García-Laynes S, Puch-Hau C, López-Ochoa LA, Lizama-Uc G, Peraza-Echeverria S. Genome-wide analysis of the *LRR-RLP* gene family in a wild banana (*Musa acuminata* ssp. *malaccensis*) uncovers multiple Fusarium wilt resistance gene candidates. Genes. 2022;13(4):638.
- Anuradha C, Chandrasekar A, Backiyarani S, Thangavelu R, Giribabu P, Uma S. Genome-wide analysis of *pathogenesis-related protein* 1 (*PR-1*) gene family from *Musa* spp. and its role in defense response during stresses. Gene. 2022;821:146334.
- Awasthi P, Khan S, Lakhani H, Chaturvedi S, Shivani, Kaur N, Singh J, Kesarwani AK, Tiwari S. Transgene-free genome editing supports CCD4 role as a negative regulator of β-carotene in banana. J Exp Bot. 2022;73(11):3401–16.
- Baysoy A, Bai ZL, Satija R, Fan R. The technological landscape and applications of single-cell multi-omics. Nat Rev Mol Cell Bio. 2023;24(10):695–713.
- Biswas MK, Biswas D, Yi GJ, Deng GM. The Musa Marker Database: A comprehensive genomic resource for the improvement of the *Musaceae* family. Agronomy. 2024;14(4):838.
- Chakrabarti A, Ganapathi TR, Mukherjee PK, Bapat VA. MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta. 2003;216(4):587–96.
- Chan HT, Chia MY, Pang VF, Jeng CR, Do YY, Huang PL. Oral immunogenicity of porcine reproductive and respiratory syndrome virus antigen expressed in transgenic banana. Plant Biotechnol J. 2013;11(3):315–24.
- Chen A, Sun JM, Viljoen A, Mostert D, Xie YC, Mangila L, et al. Genetic mapping, candidate gene identification and marker validation for host plant resistance to the Race 4 of *Fusarium oxysporum* f. sp. *cubense* using *Musa acuminata* ssp. *malaccensis*. Pathogens. 2023a;12(6):820.
- Chen HC, Song ZY, Wang LH, Lai XH, Chen WX, Li XP, et al. Auxin-responsive protein MalAA17-like modulates fruit ripening and ripening disorders induced by cold stress in "Fenjiao" banana. Int J Biol Macromol. 2023b;247:125750.
- Chen TH, Wei W, Shan W, Kuang JF, Chen JY, Lu WJ, et al. MaHDA6-MaNAC154 module regulates the transcription of cell wall modification genes during banana fruit ripening. Postharvest Biol Tec. 2023c;198:112237.
- Chong-Pérez B, Kosky RG, Reyes M, Rojas L, Ocaña B, Tejeda M, Pérez B, Angenon G. Heat shock induced excision of selectable marker genes in transgenic banana by the Cre-lox site-specific recombination system. J Biotechnol. 2012;159(4):265–73.
- D'Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M, Da Silva C, Jabbari K, Cardi C, Poulain J, Souquet M, Labadie K, Jourda C, Lengellé J, Rodier-Goud M, Alberti A, Bernard M, Correa M, Ayyampalayam S, McKain MR, Leebens-Mack J, Burgess D, Freeling M, Mbéguié-A-Mbéguié D, Chabannes M, Wicker T, Panaud O, Barbosa J, Hribova E, Heslop-Harrison P, Habas R, Rivallan R, Francois P, Poiron C, Kilian A, Burthia D, Jenny C, Bakry F, Brown S, Guignon V, Kema G, Dita M, Waalwijk C, Joseph S, Dievart A, Jaillon O, Leclercq J, Argout X, Lyons E, Almeida A, Jeridi M, Dolezel J, Roux N, Risterucci AM, Weissenbach J, Ruiz M, Glaszmann JC, Quétier F, Yahiaoui N, Wincker P. The banana (*Musa acuminata*) genome and the evolution of monocotyledonous plants. Nature. 2012;488(7410):213–7.
- Dale J, James A, Paul JY, Khanna H, Smith M, Peraza-Echeverria S, Garcia-Bastidas F, Kema G, Waterhouse P, Mengersen K, Harding R. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nat Commun. 2017;8(1):1496.

- De Langhe E, Vrydaghs L, de Maret P, Perrier X, Denham T. Why Bananas Matter: An introduction to the history of banana domestication. Ethnobot Res Appl. 2009;7:165–77.
- Denham TP, Haberle SG, Lentfer C, Fullagar R, Field J, Therin M, Porch N, Winsborough B. Origins of agriculture at Kuk Swamp in the highlands of New Guinea. Science. 2003;301(5630):189–93 (New York, N.Y.).
- d'Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R. Turning meiosis into mitosis. PLoS Biol. 2009;7(6):e1000124.
- Dou TX, Hu CH, Sun XX, Shao XH, Wu JH, Ding LJ, Gao J, He WD, Biswas MK, Yang QS, Yi GJ. MpMYBS3 as a crucial transcription factor of cold signaling confers the cold tolerance of banana. Plant Cell Tissue Organ Cult (PCTOC). 2016;125(1):93–106.
- Dou TX, Shao XH, Hu CH, Liu SW, Sheng O, Bi FC, Deng GM, Ding LJ, Li CY, Dong T, Gao HJ, He WD, Peng X, Zhang S, Huo H, Yang QS, Yi GJ. Host-induced gene silencing of *Foc* TR4 *ERG6/11* genes exhibits superior resistance to Fusarium wilt of banana. Plant Biotechnol J. 2020;18(1):11–3.
- FAOSTAT. 2022. Available from: https://www.fao.org/faostat/en/#data.
- Gao J, Zhang S, He WD, Shao XH, Li CY, Wei YR, Deng GM, Kuang RB, Hu CH, Yi GJ, Yang QS. Comparative phosphoproteomics reveals an important role of MKK2 in banana (*Musa* spp.) cold signal network. Sci Rep. 2017;7(1):40852.
- Gao J, Dou TX, He WD, Sheng O, Bi FC, Deng GM, Gao HJ, Dong T, Li CY, Zhang S, Yi GJ, Hu CH, Yang QS. MaMAPK3-MalCE1-MaPOD P7 pathway, a positive regulator of cold tolerance in banana. BMC Plant Biol. 2021;21(1):97.
- Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V, et al. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front Nutr. 2018;5:12.
- Ghag SB, Shekhawat UKS, Ganapathi TR. Native cell-death genes as candidates for developing wilt resistance in transgenic banana plants. AoB Plants. 2014a;6:plu037.
- Ghag SB, Shekhawat UKS, Ganapathi TR. *Petunia* floral defensins with unique prodomains as novel candidates for development of fusarium wilt resistance in transgenic banana plants. PLoS ONE. 2012;7(6): e39557.
- Ghag SB, Shekhawat UKS, Ganapathi TR. Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana. Plant Biotechnol J. 2014b;12(5):541–53.
- Ghag SB, Shekhawat UKS, Ganapathi TR. Transgenic banana plants expressing a *Stellariamedia defensin* gene (*Sm-AMP-D1*) demonstrate improved resistance to *Fusarium oxysporum*. Plant Cell Tissue Organ Cult (PCTOC). 2014c;119(2):247–55.
- Häkkinen M. Reappraisal of sectional taxonomy in *Musa (Musaceae)*. Taxon. 2013;62(4):809–13.
- Han YC, Kuang JF, Chen JY, Liu XC, Xiao YY, Fu CC, Wang JN, Wu KQ, Lu WJ. Banana Transcription factor MaERF11 recruits histone deacetylase MaHDA1 and represses the expression of MaACO1 and expansins during fruit ripening. Plant Physiol. 2016;171(2):1070–84.
- Hao SY, Zhang YY, Li RD, Qu PY, Cheng CZ. *Agrobacterium*-mediated in planta transformation of horticultural plants: Current status and future prospects. Sci Hortic. 2024;325: 112693.
- He WD, Gao J, Dou TX, Shao XH, Bi FC, Sheng O, Deng GM, Li CY, Hu CH, Liu JH, Zhang S, Yang QS, Yi GJ. Early cold-induced peroxidases and aquaporins are associated with high cold tolerance in Dajiao (*Musa* spp. 'Dajiao'). Front Plant Sci. 2018;9:282.
- Heslop-Harrison JS, Schwarzacher T. Domestication, genomics and the future for banana. Ann Bot. 2007;100(5):1073–84.
- Hu CH, Wei YR, Huang YH, Yi GJ. An efficient protocol for the production of *chit42* transgenic Furenzhi banana (*Musa* spp. AA group) resistant to *Fusarium oxysporum*. In Vitro Cell Dev-Pl. 2013;49(5):584–92.
- Hu W, Yan Y, Shi HT, Liu JH, Miao HX, Tie WW, Ding ZH, Ding XP, Wu CL, Liu Y, Wang JS, Xu BY, Jin ZQ. The core regulatory network of the abscisic acid pathway in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. BMC Plant Biol. 2017;17(1):145.
- Hu CH, Sheng O, Dong T, Yang QS, Dou TX, Li CY, He WD, Gao HJ, Yi GJ, Deng GM, Bi FC. Overexpression of *MaTPD1A* impairs fruit and pollen development by modulating some regulators in *Musa itinerans*. BMC Plant Biol. 2020;20(1):402.

- Hu CH, Sheng O, Deng GM, He WD, Dong T, Yang QS, et al. CRISPR/Cas9-mediated genome editing of *MaACO1* (*aminocyclopropane-1-carboxylate oxidase 1*) promotes the shelf life of banana fruit. Plant Biotechnol J. 2021;19(4):654–6.
- Hu CH, Liu F, Sheng O, Yang QS, Dou TX, Dong T, Li CY, Gao HJ, He WD, Liu SW, Deng GM, Yi GJ, Bi FC. Efficient and transgene-free genome editing in banana using a *REG-2* promoter–driven gene-deletion system. Molecular Horticulture. 2023;3(1):16.
- Huang HR, Liu X, Arshad R, Wang X, Li WM, Zhou YF, Ge XJ. Telomere-totelomere haplotype-resolved reference genome reveals subgenome divergence and disease resistance in triploid Cavendish banana. Hortic Res. 2023;10(9):uhad153.
- James A, Paul JY, Souvan J, Cooper T, Dale J, Harding R, Deo P. Assessment of root-specific promoters in banana and tobacco and identification of a banana TIP2 promoter with strong root activity. Front Plant Sci. 2022;13:1009487.
- Jangale BL, Chaudhari RS, Azeez A, Sane PV, Sane AP, Krishna B. Independent and combined abiotic stresses affect the physiology and expression patterns of DREB genes differently in stress-susceptible and resistant genotypes of banana. Physiol Plantarum. 2019;165(2):303–18.
- Justine AK, Kaur N, Savita, Pati PK. Biotechnological interventions in banana: current knowledge and future prospects. Heliyon. 2022;8(11):e11636.
- Kleidon J, Brinin A, Paul JY, Harding R, Dale J, Dugdale B. Production of selectable marker gene-free Cavendish banana (*Musa* spp.) using a steroidinducible recombinase platform. Transgenic Res. 2020;29(1):81–93.
- Kuang JF, Wu CJ, Guo YF, Walther D, Shan W, Chen JY, Chen L, Lu WJ. Deciphering transcriptional regulators of banana fruit ripening by regulatory network analysis. Plant Biotechnol J. 2021;19(3):477–89.
- Li D, Wu XH, Li L, Wang YS, Xu YQ, Luo ZS. Epibrassinolide enhanced chilling tolerance of postharvest banana fruit by regulating energy status and pyridine nucleotide homeostasis. Food Chem. 2022a;382: 132273.
- Li HC, Hu CH, Xie AF, Wu SP, Bi FC, Dong T, Li CY, Deng GM, He WD, Gao HJ, Sheng O, Yi GJ, Yang QS, Dou TX. Overexpression of MpbHLH transcription factor, an encoding ICE1-like protein, enhances *Foc* TR4-resistance of Cavendish banana. Sci Hortic. 2022b;291: 110590.
- Li Z, Zhou Y, Liang H, Li Q, Jiang Y, Duan X, Jiang G. MaMYB13 is involved in response to chilling stress via activating expression of VLCFAs and phenylpropanoids biosynthesis-related genes in postharvest banana fruit. Food Chem. 2023a;405: 134957.
- Li XX, Yu S, Cheng ZH, Chang XJ, Yun YZ, Jiang MW, Chen XQ, Wen XH, Li H, Zhu WJ, Xu SY, Xu YB, Wang XJ, Zhang C, Wu Q, Hu J, Lin ZG, Aury JM, Van de Peer Y, Wang ZH, Zhou XF, Wang JH, Lü PT, Zhang LS. Origin and evolution of the triploid cultivated banana genome. Nat Genet. 2024;56(1):136–42.
- Liu SW, Li J, Zhang YY, Liu N, Viljoen A, Mostert D, et al. Fusaric acid instigates the invasion of banana by *Fusarium oxysporum* f. sp. *cubense* TR4. New Phytol. 2020a;225(2):913–29.
- Liu GY, Li B, Li X, Wei YX, He CX, Shi HT. *MaWRKY80* positively regulates plant drought stress resistance through modulation of abscisic acid and redox metabolism. Plant Physiol Bioch. 2020b;156:155–66.
- Liu JH, Liu MT, Wang JY, Zhang J, Miao HX, Wang Z, Jia CH, Zhang JB, Xu BY, Jin ZQ. Transcription factor MaMADS36 plays a central role in regulating banana fruit ripening. J Exp Bot. 2021;72(20):7078–91.
- Liu F, Dou TX, Hu CH, Zhong Q, Sheng O, Yang QS, Deng GM, He WD, Gao HJ, Li CY, Dong T, Liu SW, Yi GJ, Bi FC. WRKY transcription factor *MaWRKY49* positively regulates pectate lyase genes during fruit ripening of *Musa acuminata*. Plant Physiol Bioch. 2023;194:643–50.
- Liu P, Panda K, Edwards SA, Swanson R, Yi H, Pandesha P, Hung YH, Klaas G, Ye X, Collins MV, Renken KN, Gilbertson LA, Veena V, Hancock CN, Slotkin RK. Transposase-assisted target-site integration for efficient plant genome engineering. Nature. 2024;631(8021):593–600.
- Longo SK, Guo MG, Ji AL, Khavari PA. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat Rev Genet. 2021;22(10):627–44.
- Lü PT, Yu S, Zhu N, Chen YR, Zhou BY, Pan Y, Tzeng D, Fabi JP, Argyris J, Garcia-Mas J, Ye NH, Zhang JH, Grierson D, Xiang J, Fei ZJ, Giovannoni J, Zhong SL. Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nat Plants. 2018;4(10):784–91.
- Luo Q, Wei W, Yang YY, Wu CJ, Chen JY, Lu WJ, Kuang JF, Shan W. E3 ligase MaNIP1 degradation of NON-YELLOW COLORING1 at high temperature inhibits banana degreening. Plant Physiol. 2023;192(3):1969–81.

- Li ZW, Zhou YJ, Liang HZ, Li Q, Jiang YM, Duan XW, Jiang GX. MaMYB13 is involved in response to chilling stress via activating expression of VLCFAs and phenylpropanoids biosynthesis-related genes in postharvest banana fruit. Food Chem. 2023;405:134957.
- Magambo B, Harjeet K, Arinaitwe G, Tendo S, Arinaitwe IK, Kubiriba J, Tushemereirwe WK, Dale J. Inhibition of cell death as an approach for development of transgenic resistance against Fusarium wilt disease. Afr J Biotechnol. 2016;15:786–97.
- Mahdavi F, Sariah M, Maziah M. Expression of rice thaumatin-like protein gene in transgenic banana plants enhances resistance to fusarium wilt. Appl Biochem Biotechnol. 2012;166(4):1008–19.
- Maji A SM, Srinivasan Mohana V, Devi Subathra C. Banana as edible vaccine asgainst Hepatitis-B: a theoretical model. Immunology Endocrine & Metabolic Agents in Medicinal Chemistry (Discontinued). 2016;16(2):129–33.
- Martin G, Cardi C, Sarah G, Ricci S, Jenny C, Fondi E, Perrier X, Glaszmann JC, D'Hont A, Yahiaoui N. Genome ancestry mosaics reveal multiple and cryptic contributors to cultivated banana. Plant J. 2020;102(5):1008–25.
- Martin G, Cottin A, Baurens FC, Labadie K, Hervouet C, Salmon F, Paulo-de-la-Reberdiere N, Van den Houwe I, Sardos J, Aury JM, D'Hont A, Yahiaoui N. Interspecific introgression patterns reveal the origins of worldwide cultivated bananas in New Guinea. Plant J. 2023;113(4):802–18.
- Maziah M, Sariah M, Sreeramanan S. Transgenic banana Rastali (AAB) with β-1, 3-glucanase gene for tolerance to Fusarium wilt race 1 disease via *Agrobacterium*-mediated transformation system. Plant Pathology J. 2007;6:271–82.
- Meng J, Hu B, Yi GJ, Li XQ, Chen HB, Wang YY, Yuan WN, Xing YQ, Sheng QM, Su ZX, Xu CX. Genome-wide analyses of banana fasciclin-like AGP genes and their differential expression under low-temperature stress in chilling sensitive and tolerant cultivars. Plant Cell Rep. 2020;39(6):693–708.
- Miao H, Sun P, Liu J, Wang J, Xu B, Jin Z. Overexpression of a novel *ROP* gene from the banana (*MaROP5g*) confers increased salt stress tolerance. Int J Mol Sci. 2018;19(10):3108.
- Mingmanit Y, Boonsrangsom T, Sujipuli K, Ratanasut K, Inthima P. Pollen viabilities and gene expression profiles across *Musa* genomes. AoB Plants. 2023;15(4):plad052.
- Mohandas S, Sowmya HD, Saxena AK, Meenakshi S, Rani RT, Mahmood R. Transgenic banana cv. Rasthali (AAB, Silk gp) harboring *Ace-AMP1* gene imparts enhanced resistance to *Fusarium oxysporum* f.sp. *cubense* race 1. Sci Hortic. 2013;164:392–9.
- Morgante M, De Paoli E, Radovic S. Transposable elements and the plant pangenomes. Curr Opin Plant Biol. 2007;10(2):149–55.
- Muwonge A, Tripathi JN, Kunert K, Tripathi L. Expressing stacked *HRAP* and *PFLP* genes in transgenic banana has no synergistic effect on resistance to *Xanthomonas* wilt disease. S Afr J Bot. 2016;104:125–33.
- Namukwaya B, Tripathi L, Tripathi JN, Arinaitwe G, Mukasa SB, Tushemereirwe WK. Transgenic banana expressing *Pflp* gene confers enhanced resistance to *Xanthomonas* wilt disease. Transgenic Res. 2012;21(4):855–65.
- Negi S, Bhakta S, Ganapathi TR, Tak H. *MusaNAC29-like* transcription factor improves stress tolerance through modulation of phytohormone content and expression of stress responsive genes. Plant Sci. 2023;326: 111507.
- Netlak P, Buensanteai N, Allan AC, Imsabai W. Rate of banana fruit ripening depends on genome composition and gene expression of ethylene signaling and ethylene biosynthesis. Sci Hortic. 2021;290: 110552.
- Ning T, Chen CJ, Yi GJ, Chen HB, Liu YD, Fan YJ, Liu J, Chen SL, Wei SX, Li ZX, Tan YH, He ZT, Xu CX. Changes in homogalacturonan metabolism in banana peel during fruit development and ripening. Int J Mol Sci. 2021;23(1):243.
- Patel P, Yadav K, Srivastava AK, Suprasanna P, Ganapathi TR. Overexpression of native *Musa*-miR397 enhances plant biomass without compromising abiotic stress tolerance in banana. Sci Rep. 2019;9(1):16434.
- Paul JY, Becker DK, Dickman MB, Harding RM, Khanna HK, Dale JL. Apoptosisrelated genes confer resistance to Fusarium wilt in transgenic "Lady Finger" bananas. Plant Biotechnol J. 2011;9(9):1141–8.
- Paul JY, Khanna H, Kleidon J, Hoang P, Geijskes J, Daniells J, Zaplin E, Rosenberg Y, James A, Mlalazi B, Deo P, Arinaitwe G, Namanya P, Becker D, Tindamanyire J, Tushemereirwe W, Harding R, Dale J. Golden bananas in the field: elevated fruit pro-vitamin A from the expression of a single banana transgene. Plant Biotechnol J. 2017;15(4):520–32.

- Pei XW, Chen SK, Wen RM, Ye S, Huang JQ, Zhang YQ, Wang BS, Wang ZX, Jia SR. Creation of transgenic bananas expressing human lysozyme gene for panama wilt resistance. J Integr Plant Biol. 2005;47(8):971–7.
- Perrier X, De Langhe E, Donohue M, Lentfer C, Vrydaghs L, Bakry F, Carreel F, Hippolyte I, Horry JP, Jenny C, Lebot V, Risterucci AM, Tomekpe K, Doutrelepont H, Ball T, Manwaring J, de Maret P, Denham T. Multidisciplinary perspectives on banana (*Musa* spp.) domestication. Proc Natl Acad Sci. 2011;108(28):11311–8.
- Qin F, Hu CH, Dou TX, Sheng O, Yang QS, Deng GM, et al. Genome-wide analysis of the polyphenol oxidase gene family reveals that MaPPO1 and MaPPO6 are the main contributors to fruit browning in *Musa acuminate*. Front Plant Sci. 2023;14(14):1125375.
- Ramírez-Sánchez M, Huber DJ, Vallejos CE. Abiotic stress triggers ROSmediated programmed cell death in banana (*Musa* sp., AAA group, Cavendish sub-group) fruit. Sci Hortic. 2022;293.
- Rekha A. History, origin, domestication, and evolution. In: Mohandas S, Ravishankar KV, editors. Banana: genomics and transgenic approaches for genetic improvement. Singapore: Springer; 2016. p. 3–11.
- Rijzaani H, Bayer PE, Rouard M, Doležel J, Batley J, Edwards D. The pangenome of banana highlights differences between genera and genomes. Plant Genome. 2022;15(1): e20100.
- Rocha AJ, Soares J, Nascimento FDS, Rocha ADS, Amorim VBO, Ramos APS, Ferreira CF, Haddad F, Amorim EP. Molecular, histological and histochemical responses of banana cultivars challenged with *Fusarium oxysporum* f. sp. *cubense* with different levels of virulence. Plants (Basel, Switzerland). 2022;11(18):2339.
- Rouard M, Droc G, Martin G, Sardos J, Hueber Y, Guignon V, Cenci A, Geigle B, Hibbins MS, Yahiaoui N, Baurens FC, Berry V, Hahn MW, D'Hont A, Roux N. Three new genome assemblies support a rapid radiation in *Musa acuminata* (Wild Banana). Genome Biol Evol. 2018;10(12):3129–40.
- Sardos J, Rouard M, Hueber Y, Cenci A, Hyma KE, van den Houwe I, Hribova E, Courtois B, Roux N. A Genome-wide association study on the seedless phenotype in banana (*Musa* spp.) reveals the potential of a selected panel to detect candidate genes in a vegetatively propagated crop. PloS One. 2016;11(5):e0154448.
- Shan W, Guo YF, Wei W, Chen JY, Lu WJ, Yuan DB, Su XG, Kuang JF. Banana MaBZR1/2 associate with MaMPK14 to modulate cell wall modifying genes during fruit ripening. Plant Cell Rep. 2020a;39(1):35–46.
- Shan W, Kuang JF, Wei W, Fan ZQ, Deng W, Li ZG, Bouzayen M, Pirrello J, Lu WJ, Chen JY. MaXB3 Modulates MaNAC2, MaACS1, and MaACO1 stability to repress ethylene biosynthesis during banana fruit ripening. Plant Physiol. 2020b;184(2):1153–71.
- Shao XH, Wu SP, Dou TX, Zhu H, Hu CH, Huo H, He WD, Deng GM, Sheng O, Bi FC, Gao HJ, Dong T, Li CY, Yang QS, Yi GJ. Using CRISPR/Cas9 genome editing system to create *MaGA20ox2* gene-modified semi-dwarf banana. Plant Biotechnol J. 2020;18(1):17–9.
- Sharma M, Sood B. A banana or a syringe: journey to edible vaccines. World J Microb Biot. 2011;27(3):471–7.
- Shekhawat UKS, Srinivas L, Ganapathi TR. *MusaDHN-1*, a novel multiple stress-inducible SK(3)-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Planta. 2011;234(5):915–32.
- Shinga MH, Fawole OA. Opuntia ficus indica mucilage coatings regulate cell wall softening enzymes and delay the ripening of banana fruit stored at retail conditions. Int J Biol Macromol. 2023;245: 125550.
- Shivani, Awasthi P, Sharma V, Kaur N, Kaur N, Pandey P, Tiwari S. Genome-wide analysis of transcription factors during somatic embryogenesis in banana (*Musa* spp.) cv Grand Naine. PloS One. 2017;12(8):e0182242.
- Shivani, Tiwari S. Enhanced *Agrobacterium*-mediated transformation efficiency of banana cultivar Grand Naine by reducing oxidative stress. Sci Hortic. 2019;246:675–85.
- Si J, Fan ZQ, Wu CJ, Yang YY, Shan W, Kuang JF, Lu WJ, Wei W, Chen JY. MaHsf24, a novel negative modulator, regulates cold tolerance in banana fruits by repressing the expression of *HSPs* and antioxidant enzyme genes. Plant Biotechnol J. 2024. https://doi.org/10.1111/pbi.14410.
- Simmonds NW, Shepherd K. The taxonomy and origins of the cultivated bananas. J Linn Soc London, Bot. 1955;55(359):302–12.
- Song Z, Lai X, Yao Y, Qin J, Ding X, Zheng Q, Pang X, Chen W, Li X, Zhu X. F-box protein EBF1 and transcription factor ABI5-like regulate banana fruit chilling-induced ripening disorder. Plant Physiol. 2022;188(2):1312–34.

- Song Z, Zhu X, Lai X, Chen H, Wang L, Yao Y, Chen W, Li X. MaBEL1 regulates banana fruit ripening by activating cell wall and starch degradationrelated genes. J Integr Plant Biol. 2023;65(9):2036–55.
- Song ZY, Li WH, Lai XH, Chen HC, Wang LH, Chen WX, Li XP, Zhu XY. MaC2H2-IDD regulates fruit softening and involved in softening disorder induced by cold stress in banana. Plant J. 2024;118(6):1937–54.
- Sreedharan S, Shekhawat UKS, Ganapathi TR. *MusaSAP1*, a A20/AN1 zinc finger gene from banana functions as a positive regulator in different stress responses. Plant Mol Biol. 2012;80(4–5):503–17.
- Sreedharan S, Shekhawat UKS, Ganapathi TR. Transgenic banana plants overexpressing a native plasma membrane aquaporin *MusaPIP1;2* display high tolerance levels to different abiotic stresses. Plant Biotechnol J. 2013;11(8):942–52.
- Sreedharan S, Shekhawat UKS, Ganapathi TR. Constitutive and stress-inducible overexpression of a native aquaporin gene (*MusaPIP2;6*) in transgenic banana plants signals its pivotal role in salt tolerance. Plant Mol Biol. 2015;88(1):41–52.
- Suárez-Rodríguez L, Mason H, Ramírez-Cabrera J, Saucedo L, Gómez-Lim M, Arntzen C, López-Gómez R. DNA fidelity: expression of a monocot promoter in a dicot plant. Am J Plant Sci. 2022;13:50–9.
- Sunisha C, Sowmya HD, Usharani TR, Umesha M, Gopalkrishna HR, Saxena A. Deployment of stacked antimicrobial genes in banana for stable tolerance against *Fusarium oxysporum* f.sp. *cubense* through genetic transformation. Mol Biotechnol. 2020a;62(1):8–17.
- Sunisha C, Sowmya HD, Usharani TR, Umesha M, Gopalkrishna HR, Sriram S. Induction of Ced9 mediated anti-apoptosis in commercial banana cultivar Rasthali for stable resistance against Fusarium wilt. 3 Biotech. 2020b;10(8):371.
- Tripathi L, Mwaka H, Tripathi JN, Tushemereirwe WK. Expression of sweet pepper *Hrap* gene in banana enhances resistance to *Xanthomonas campestris* pv. *musacearum*. Mol Plant Pathol. 2010;11(6):721–31.
- Tripathi JN, Ntui VO, Shah T, Tripathi L. CRISPR/Cas9-mediated editing of *DMR6* orthologue in banana (*Musa* spp.) confers enhanced resistance to bacterial disease. Plant Biotechnol J. 2021;19(7):1291–3.
- Tripathi JN, Ntui VO, Ron M, Muiruri SK, Britt A, Tripathi L. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of *Musa* spp. overcomes a major challenge in banana breeding. Commun Biol. 2019;2(1):46.
- Tripathi L, Tripathi JN, Kiggundu A, Korie S, Shotkoski F, Tushemereirwe WK. Field trial of *Xanthomonas* wilt disease-resistant bananas in East Africa. Nat Biotechnol. 2014;32(9):868–70.
- Tripathi L, Tripathi JN, Kubiriba J. Transgenic technologies for bacterial wilt resistance. In: Mohandas S, Ravishankar KV, editors. Banana: genomics and transgenic approaches for genetic improvement. Singapore: Springer; 2016. p. 197–209.
- Tripathi L, Atkinson H, Roderick H, Kubiriba J, Tripathi JN. Genetically engineered bananas resistant to *Xanthomonas* wilt disease and nematodes. Food Energy Secur. 2017;6(2):37–47.
- Tripathi L, Ntui VO, Tripathi JN. CRISPR/Cas9-based genome editing of banana for disease resistance. Curr Opin Plant Biol. 2020;56:118–26.
- Tripathi L, Ntui VO, Tripathi JN, Norman D, Crawford J. A new and novel high-fidelity genome editing tool for banana using Cas-CLOVER. Plant Biotechnol J. 2023;21(9):1731–3.
- Turrell C. Saving Cavendish. Nat Biotechnol. 2024;42(4):545.
- Wang ZF, Rouard M, Droc G, Heslop-Harrison P, Ge XJ. Genome assembly of *Musa beccarii* shows extensive chromosomal rearrangements and genome expansion during evolution of Musaceae genomes. GigaScience. 2023;12:giad005.
- Wang C, Liu Q, Shen Y, Hua YF, Wang JJ, Lin JR, Wu MG, Sun TT, Cheng ZK, Mercier R, Wang KJ. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat Biotechnol. 2019a;37(3):283–6.
- Wang Z, Miao HX, Liu JH, Xu BY, Yao XM, Xu CY, Zhao SC, Fang XD, Jia CH, Wang JY, Zhang JB, Li JY, Xu Y, Wang JH, Ma WH, Wu ZY, Yu LL, Yang YL, Liu C, Guo Y, Sun SL, Baurens FC, Martin G, Salmon F, Garsmeur O, Yahiaoui N, Hervouet C, Rouard M, Laboureau N, Habas R, Ricci S, Peng M, Guo AP, Xie JH, Li Y, Ding ZH, Yan Y, Tie WW, D'Hont A, Hu W, Jin ZQ. *Musa balbisiana* genome reveals subgenome evolution and functional divergence. Nat Plants. 2019b;5(8):810–21.
- Wang YZ, Fuentes RR, van Rengs WMJ, Effgen S, Zaidan MWAM, Franzen R, Susanto T, Fernandes JB, Mercier R, Underwood CJ. Harnessing clonal

gametes in hybrid crops to engineer polyploid genomes. Nat Genet. 2024;56(6):1075–9.

- Waniale A, Mukasa SB, Tugume AK, Barekye A, Tumuhimbise R. Promising and failed breeding techniques for overcoming sterility and increasing seed set in bananas (*Musa* spp). Horticulturae. 2024;10(5):513.
- Wantat A, Seraypheap K, Rojsitthisak P. Effect of chitosan coatings supplemented with chitosan-montmorillonite nanocomposites on postharvest quality of 'Hom Thong' banana fruit. Food Chem. 2022;374: 131731.
- Wei W, Luo Q, Yang YY, Wu CJ, Kuang JF, Chen JY, Lu WJ, Shan W. E3 ubiquitin ligase MaRZF1 modulates high temperature-induced green ripening of banana by degrading MaSGR1. Plant Cell Environ. 2024;47(4):1128–40.
- Wei W, Yang YY, Wu CJ, Kuang JF, Chen JY, Lu WJ, et al. MaMADS1-MaNAC083 transcriptional regulatory cascade regulates ethylene biosynthesis during banana fruit ripening. Hortic Res. 2023a;10(10):uhad177.
- Wei W, Yang YY, Chen JY, Lakshmanan P, Kuang JF, Lu WJ, et al. MaNAC029 modulates ethylene biosynthesis and fruit quality and undergoes MaXB3-mediated proteasomal degradation during banana ripening. J Adv Res. 2023b;53:33–47.
- Wei W, Yang YY, Lakshmanan P, Kuang JF, Lu WJ, Pang XQ, et al. Proteasomal degradation of MaMYB60 mediated by the E3 ligase MaBAH1 causes high temperature-induced repression of chlorophyll catabolism and green ripening in banana. Plant Cell. 2023c;35(5):1408–28.
- Wei W, Yang YY, Wu CJ, Kuang JF, Chen JY, Lu WJ, et al. MaMADS1-MaNAC083 transcriptional regulatory cascade regulates ethylene biosynthesis during banana fruit ripening. Hortic Res. 2023d;10(10):uhad177.
- Wu CJ, Cai DL, Li J, Lin ZX, Wei W, Shan W, Chen JY, Lu WJ, Su XG, Kuang JF. Banana MabHLH28 positively regulates the expression of softeningrelated genes to mediate fruit ripening independently or via cooperating with MaWRKY49/111. Hortic Res. 2024a;11(4):uhae053.
- Wu W, Yang YL, He WM, Rouard M, Li WM, Xu M, Roux N, Ge XJ. Whole genome sequencing of a banana wild relative *Musa itinerans* provides insights into lineage-specific diversification of the *Musa* genus. Sci Rep. 2016;6(1):31586.
- Wu CJ, Shan W, Liang SM, Zhu LS, Guo YF, Chen JY, Lu WJ, Li QF, Su XG, Kuang JF. MaMPK2 enhances MabZIP93-mediated transcriptional activation of cell wall modifying genes during banana fruit ripening. Plant Mol Biol. 2019;101(1):113–27.
- Wu SP, Zhu HC, Liu JX, Yang QS, Shao XH, Bi FC, Hu CH, Huo HQ, Chen KL, Yi GJ. Establishment of a PEG-mediated protoplast transformation system based on DNA and CRISPR/Cas9 ribonucleoprotein complexes for banana. BMC Plant Biol. 2020;20(1):425.
- Wu CJ, Shan W, Liu XC, Zhu LS, Wei W, Yang YY, Guo YF, Bouzayen M, Chen JY, Lu WJ, Kuang JF. Phosphorylation of transcription factor bZIP21 by MAP kinase MPK6-3 enhances banana fruit ripening. Plant Physiol. 2022;188(3):1665–85.
- Wu SF, Hu CH, Zhang S, Deng GM, Sheng O, Dou TX, et al. Lipid metabolism and MAPK-ICE1 cascade play crucial roles in cold tolerance of banana. Hortic Adv. 2024b;2(1):8.
- Xia KK, Sun HX, Li J, Li JM, Zhao Y, Chen LH, Qin C, Chen RY, Chen ZY, Liu GY, Yin RL, Mu BB, Wang XJ, Xu MY, Li XY, Yuan PS, Qiao YX, Hao SJ, Wang J, Xie Q, Xu JS, Liu SP, Li YD, Chen A, Liu LQ, Yin Y, Yang HM, Wang J, Gu Y, Xu X. The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in *Arabidopsis* leaves. Dev Cell. 2022;57(10):1299–310.
- Xiao TW, Liu X, Fu N, Liu TJ, Wang ZF, Ge XJ, Huang HR. Chromosome-level genome assemblies of *Musa ornata* and *Musa velutina* provide insights into pericarp dehiscence and anthocyanin biosynthesis in banana. Hortic Res. 2024;11(5):uhae079.
- Xiao YY, Kuang JF, Qi XN, Ye YJ, Wu ZX, Chen JY, Lu WJ. A comprehensive investigation of starch degradation process and identification of a transcriptional activator MabHLH6 during banana fruit ripening. Plant Biotechnol J. 2018;16(1):151–64.
- Xiao XM, Li LL, Kuang JF, Chen JY, Lu WJ, Wei W, Shan W. Cold pretreatment promotes chlorophyll degradation of green ripening banana peel by activating MaCBF1 to *MaCBR* and *MaSGR1*. Food Chem. 2023;413: 135575.
- Xie WZ, Zheng YY, He WD, Bi FC, Li YY, Dou TX, Zhou R, Guo YX, Deng GM, Zhang WH, Yuan MH, Sanz-Jimenez P, Zhu XT, Xu XD, Zhou ZW, Zhou ZW, Feng JW, Liu SW, Li CY, Yang QS, Hu CH, Gao HJ, Dong T, Dang JB, Guo QG, Cai WG, Zhang JW, Yi GJ, Song JM, Sheng O, Chen LL. Two haplotype-resolved genome assemblies for AAB allotriploid bananas

provide insights into banana subgenome asymmetric evolution and Fusarium wilt control. Plant Commun. 2024;5(2): 100766.

- Xu Y, Hu W, Liu JH, Song S, Hou XW, Jia CH, Li JY, Miao HX, Wang Z, Tie WW, Xu BY, Jin ZQ. An aquaporin gene *MaPIP2–7* is involved in tolerance to drought, cold and salt stresses in transgenic banana (*Musa acuminata* L.). Plant Physiol Bioch. 2020;147:66–76.
- Xu Y, Hu W, Song S, Ye XX, Ding ZH, Liu JH, Wang Z, Li JY, Hou XW, Xu BY, Jin ZQ. MaDREB1F confers cold and drought stress resistance through common regulation of hormone synthesis and protectant metabolite contents in banana. Hortic Res. 2023;10(2):uhac275.
- Yan HL, Jiang GX, Wu FW, Li ZW, Xiao L, Jiang YM, Duan XW. Sulfoxidation regulation of transcription factor NAC42 influences its functions in relation to stress-induced fruit ripening in banana. J Exp Bot. 2021;72(2):682–99.
- Yang QS, Wu JH, Li CY, Wei YR, Sheng O, Hu CH, Kuang RB, Huang YH, Peng XX, McCardle JA, Chen W, Yang Y, Rose JK, Zhang S, Yi GJ. Quantitative proteomic analysis reveals that antioxidation mechanisms contribute to cold tolerance in plantain (*Musa paradisiaca* L.; ABB Group) seedlings. Mol Cell Proteomics. 2012;11(12):1853–69.
- Yang QS, Gao J, He WD, Dou TX, Ding LJ, Wu JH, Li CY, Peng XX, Zhang S, Yi GJ. Comparative transcriptomics analysis reveals difference of key gene expression between banana and plantain in response to cold stress. BMC Genomics. 2015;16(1):446.
- Yang YY, Shan W, Yang TW, Wu CJ, Liu XC, Chen JY, Lu WJ, Li ZG, Deng W, Kuang JF. MaMYB4 is a negative regulator and a substrate of RING-type E3 ligases MaBRG2/3 in controlling banana fruit ripening. Plant J. 2022;110(6):1651–69.
- Yin Q, Qin WQ, Zhou ZB, Wu AM, Deng W, Li ZG, Shan W, Chen JY, Kuang JF, Lu WJ. Banana MaNAC1 activates secondary cell wall cellulose biosynthesis to enhance chilling resistance in fruit. Plant Biotechnol J. 2024;22(2):413–26.
- Yu XL, Liu ZX, Sun XW. Single-cell and spatial multi-omics in the plant sciences: technical advances, applications, and perspectives. Plant Commun. 2023;4(3): 100508.
- Yun Z, Gao HJ, Chen X, Duan XW, Jiang YM. The role of hydrogen water in delaying ripening of banana fruit during postharvest storage. Food Chem. 2022;373: 131590.
- Zeng J, Jiang GX, Liang HZ, Yan HL, Kong XJ, Duan XW, Li ZW. Histone demethylase MaJMJ15 is involved in the regulation of postharvest banana fruit ripening. Food Chem. 2023;407: 135102.
- Zhang L, Yuan L, Staehelin C, Li Y, Ruan J, Liang Z, Xie Z, Wang W, Xie J, Huang S. The LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE 1 protein of banana is required for perception of pathogenic and symbiotic signals. New Phytol. 2019;223(3):1530–46.
- Zhang S, Wu SP, Hu CH, Yang QS, Dong T, Sheng O, Deng GM, He WD, Dou TX, Li CY, Sun C, Yi GJ, Bi FC. Increased mutation efficiency of CRISPR/ Cas9 genome editing in banana by optimized construct. PeerJ. 2022;10: e12664.
- Zhou R, Wang S, Zhan N, He WD, Deng GM, Dou TX, Zhu XT, Xie WZ, Zheng YY, Hu CH, Bi FC, Gao HJ, Dong T, Liu SW, Li CY, Yang QS, Wang LQ, Song JM, Dang JB, Guo QG, Yi GJ, Chen LL, Sheng O. High-quality genome assemblies for two Australimusa bananas (Musa spp.) and insights into regulatory mechanisms of superior fiber properties. Plant Commun. 2024;5(1).
- Zhu H, Chen CJ, Zeng J, Yun Z, Liu YL, Qu HX, Jiang YM, Duan XW, Xia R. MicroRNA528, a hub regulator modulating ROS homeostasis via targeting of a diverse set of genes encoding copper-containing proteins in monocots. New Phytol. 2020a;225(1):385–99.
- Zhu XY, Song ZY, Li QM, Li J, Chen WX, Li XP. Physiological and transcriptomic analysis reveals the roles of 1-MCP in the ripening and fruit aroma quality of banana fruit (Fenjiao). Food Res Int. 2020b;130: 108968.
- Zhu WJ, Li H, Dong PF, Ni XT, Fan ML, Yang YJ, et al. Low temperature-induced regulatory network rewiring via WRKY regulators during banana peel browning. Plant Physiol. 2023;193(1):855–73.

### **Publisher's Note**

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.